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An Rd-valued Random Variable

Setting: a filtered probability space (Ω,F ,P).

Consider a random variable X : (Ω,F)→ (Rd,B)

B is the Borel σ-algebra on Rd
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Minimal-Volume, Sufficient-Probability Sets

Fix α ∈ [0, 1].

Sets containing X with sufficient probability

S = {S ∈ B : P(X ∈ S) ≥ α}

Minimum-volume sufficient-probability sets (or α-MVSPs)

M = {arg min{|M | : M ∈ S }}

where | · | is the Lebesgue measure.
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Superlevel Sets

The superlevel sets of the pdf f of X are

Ly = {x ∈ R : f(x) ≥ y}

L0.35 = (−0.5, 0.5) L0.2 = (−1.18, 1.18) L0.05 = (−2, 2)

Figure: Superlevel sets of pdf f with P(X ∈ Ly) =
∫
Ly f(x) dx in blue

Ryan T. White (FIT) On the Evolution of MVSP Sets 2020 4 / 35



Probability Set-Density

Probability set-density

D : {B ∈ B : |B| > 0} → [0, sup f ]

where

D(B) =
P(X ∈ B)

|B|

D(B) is the probability X ∈ B (mass) divided by the Lebesgue measure of the region B (volume)
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Minimum Volume Class of Sets (MVCS)

MVCS of X for α ∈ [0, 1] are

MVC : [0, 1]→P(B)

where

MVC(α) = {arg max{D(B) : P(X ∈ B) = α}}

Requires = α rather than ≥ α, so certain pdfs fail to have MVCS

We assume f is continuous with f ′ = 0 on null sets of the domain.
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α-MVCs and Superlevel Sets

For these examples, 0.95-MV coincide with superlevel sets
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Example: Bivariate Normal

µ1 = µ2 = 0, σ1 = σ2 = 1, and ρ = 0.9

Code: sort pdf on a mesh and add tiny regions to build a 0.95-MVSP set
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Example: Multimodal RV

Bivariate pdf f(x1, x2) = sin(nπx1) cos(nπx2)+1

4L2 on [−L,L]× [−L,L] for L = 5, n = 1
4
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α-MV-Superlevel Set Equivalence

Theorem (Garcia et al. [2003])

A superlevel set Ly of f has probability α ∈ (0, 1], P(X ∈ Ly) = α, if and only if the superlevel set is a MVCS of
X, Ly ∈MVC(α).

Probability mass functions work too

Some similar work exists from [Polonik, 1995]

Prior results for continuous f exist from outside probability literature [Nguyen and Kreinovich, 1999]
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Toward Stochastic Processes

Garcia et al. [2003] focused on a random variable

Can we exploit the MVC-superlevel set equivalence a stochastic process?

Consider a filtered probability space (Ω,F , (Ft),P).

Let (At, t ≥ 0) : (Ω,Ft)→ (Rd,B) be a stochastic process
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Example: Brownian Motion

Figure: At is Brownian motion valued in R1
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Example: Brownian Motion

At ∼ N (0, t), α = 0.95

Figure: Probability density functions (pdfs) ft of At with 0.95-MVSPs and probabilities

For fixed t, a 0.95-MVSP set is (−2
√
t, 2
√
t).
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Example: Brownian Motion

If we take a horizontal line at y = sup ft and move it down and integrate, eventually we get α = 0.95.

L0.35
1 = (−0.5, 0.5) L0.2

1 = (−1.18, 1.18) L0.05
1 = (−2, 2)

Figure: Superlevel sets of pdf f1 with P(A1 ∈ Ly1) =
∫
L
y
1
f1(x) dx in blue
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MVSP-Superlevel Set Equivalence for Brownian Motion

For Brownian motion,

P
(
At ∈ Lft(2

√
t)

t

)
= P

(
At ∈

(
−2
√
t, 2
√
t
))

= 0.95

0.95-MVSPs are superlevel sets of ft for Brownian motion
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Example: Brownian Motion

Figure: The evolution of 0.95-MVSPs (ft(2
√
t)-superlevel sets) for Brownian motion
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A Queueing Process

Qt on a filtered probability space (Ω,F , (Ft),P)

Entering customers: batches X arrive at t1 < t2 < ...

Exiting customers: batches Y depart at τ1 < τ2 < ...

QUEUE TYPE: MX/GY /1 with several operational policies
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Two Common Problems with Queueing Systems

Switchovers can be costly

Resources are wasted when the system is off

GOAL: Minimize switchovers and do secondary tasks when possible while serving customers efficiently
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N -Policy: Reducing Switchovers

POLICY:

1. If Qt < N and the system is off, wait until it reaches N .

2. Else, serve customers.

Classical switchover mitigation technique [Yadin and Naor, 1963]

Qt small =⇒ queue is likely exhausted quickly and system turns off

Qt large =⇒ queue will persist, system works continuously

BIG CON: customers must wait sometimes
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r-R-Quorum: Completing Secondary Tasks

POLICY:

1. If Qt = 0, batch secondary service

2. If 0 < Qt < r, parallel service – single primary service, batch secondary service

3. If Qt > r, primary service to batch of min{queue, R}

Related to some classical queueing ideas

r-quorum [Neuts, 1967]

Hysteretic control [Loris-Tegham, 1978]

MAIN BENEFITS: less primary waiting , secondary work done
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Hysteretic Control

Figure: A path of Qt with r and N control levels
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Queueing System Structure
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Prior Results on Q(τρ)

[Dshalalow et al., 2019]: functionals of changes during each mode

Φ(u, v, w, θ) = E
[
uprimary servedvsecondary servedwprimary arrivalse−θ(duration)

]
with modified z-transforms

Φ
Transform−−−−−→ Ψ

Assumptions on the system−−−−−−−−−−−−−−→ Ψ (convenient form)
Inverse−−−→ Φ (tractable)

Moments and marginal distributions

Transition probability matrix

Ergodicity conditions, similar to [Abolnikov and Dukhovny, 1991]

Stationary distribution

Mean stationary service cycle
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Prior Results on Qt

Let Qt = (At, Bt) = (primary queue length in mode, secondary units processed in mode)

For each mode with (random) duration τρ, we found [White and Dshalalow, 2019]

Φ(s, u, v, θ) =

∫
t≥0

e−stE
[
zAtξBte−θτρ1[0,τρ)(t)

]
dt

It is simple to find

Φ
inverse−−−→ E

[
uAtvBte−θτρ 1[0,τρ)(t)

]
dist. assumptions−−−−−−−−−→ time-dependent moments, marginal/joint distributions
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What’s Missing?

Distributions independent of mode

E
[
uAtvBte−θτρ 1[0,τρ)(t)

]

No clear path analytically → we CAN simulate

Can we optimize parameters for efficiency?

Where does the system get “stuck”?

What’s the distribution on service exit?
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Drop Process ξt

Let ξt = At upon each primary service exit and otherwise constant

Figure: Black: Qt, Blue: ξt for rN-policy without Mode 2
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Simulating the Queue

10,000 sims with T = 50, we get many sets {(t, ξt) : t = 0, step, 2step..., 50}

→ empirical distribution at each t
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Empirical Densities of ξt

Figure: The densities of ξt wit r = 20, N = 100, R = 30, S = 20, Q0 = 10
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0.95-MVSP-Superlevel Set Evolution
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0.70-MVSP-Superlevel Set Evolution

From a simpler model [Al-Obaidi and Dshalalow, 2020]

No Mode 2, r and N control levels, primary batches geometric.
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Example: Multidimensional Brownian Motion

Let Bt be standard Brownian motion

Bt is multivariate normal with mean 0 and covariance Σ = diag(t, ..., t)

Figure: A simulated path of 2D Brownian Motion
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Example: 2D Brownian Motion

We can search for the α-level sets and α-MVSPs with code by sorting an empirical pdf on a 2D mesh

(a) Level sets with P (Bt ∈ Lyt ) = 0.95 (b) Plots of MVSPs expand as time progresses
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New Work

Let n(t) = t+ 1
4

for 0 ≤ t ≤ 3
4

in f(x1, x2) = sin(nπx1) cos(nπx2)+1

4L2 , L = 5

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Time

Use probability flux across the MVSP boundaries to reduce computational stress → more dimensions

Ryan T. White (FIT) On the Evolution of MVSP Sets 2020 33 / 35



References I

L. Abolnikov and A. Dukhovny. Markov chains with transition delta-matrix: ergodicity conditions, invariant
probability measures and applications. Journal of Applied Mathematics and Stochastic Analysis, 4(4):335–355,
1991.

A. H. M. Al-Obaidi and J. H. Dshalalow. Characterization of generalized poisson measures on topological spaces.
Stochastic Analysis and Applications, 2020. (in press).

J. H. Dshalalow, A. Merie, and R. T. White. Fluctuation analysis in parallel queues with hysteretic control.
Methodology and Computing in Applied Probability, pages 1–33, 2019. doi: 10.1007/s11009-019-09701-z.
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