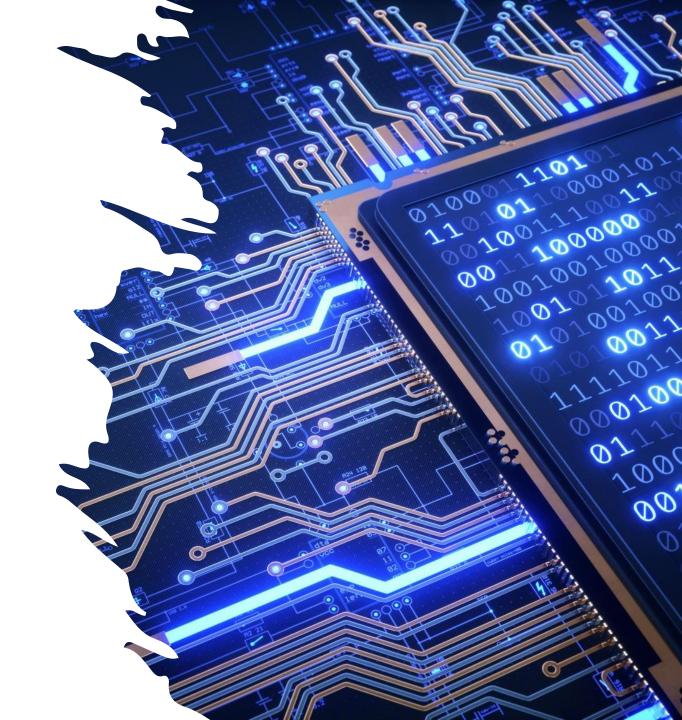
Computer Vision Beyond Image Classification

RYAN T. WHITE, PH.D.
FLORIDA INSTITUTE OF TECHNOLOGY



Background

Grew up in Logan, WV

Super into math!

the whole city →

Moved to Florida in 2009 for grad school in math

Wheelchair-user since 2009

2008

•B.S. Mathematics Chadron State College

2015

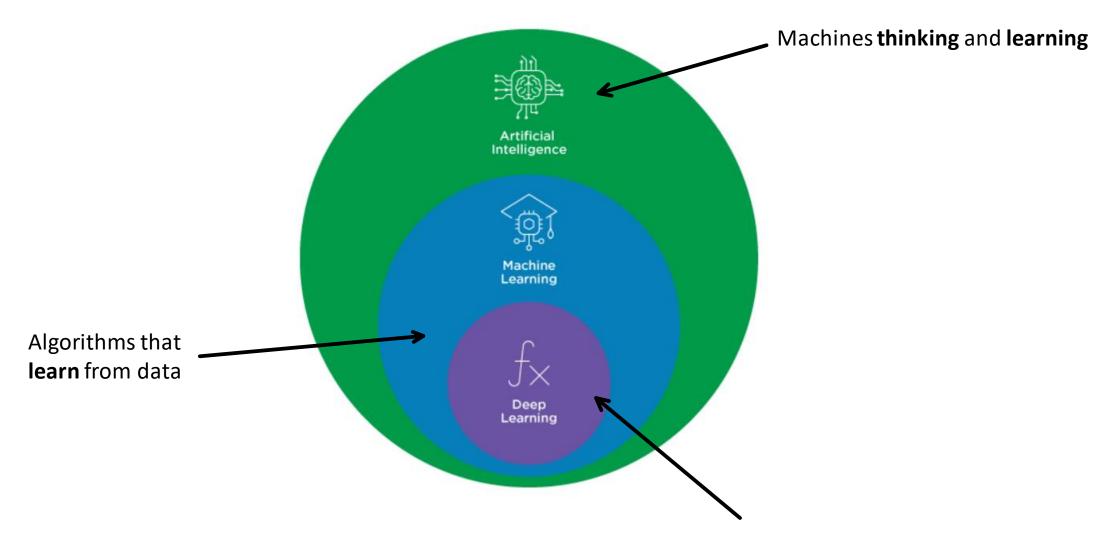
•Ph.D. Applied Mathematics Florida Tech

2019

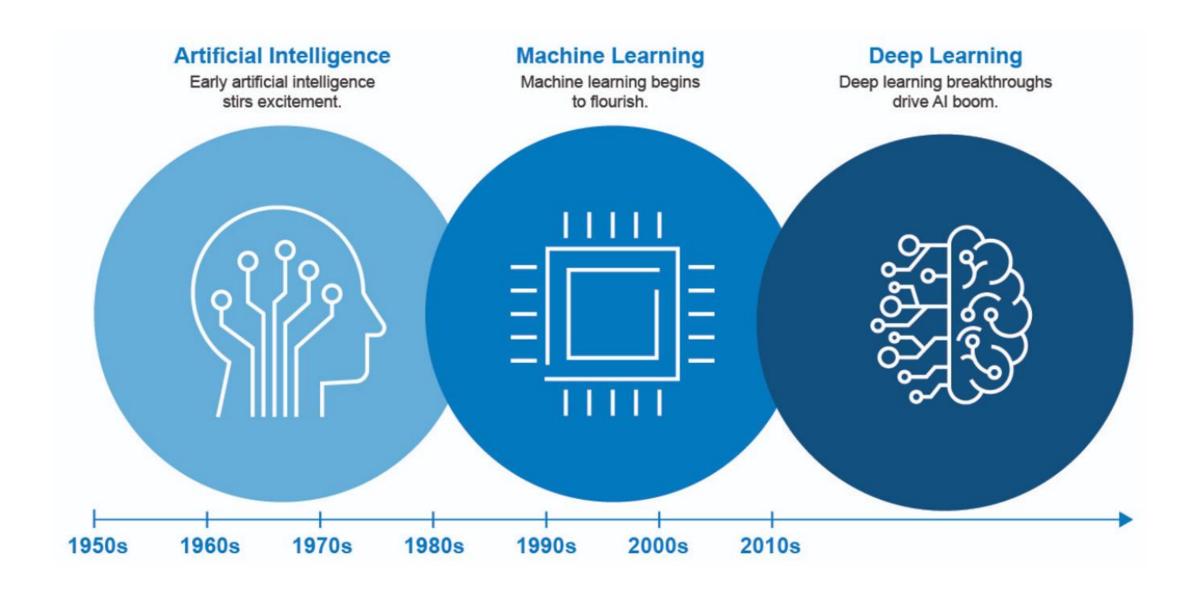
 Assistant Professor Florida Tech

2020

•Senior Advisor on Data Sciences Engage-Al



A class of many-layered (deep) neural networks that learn from data



Neurons

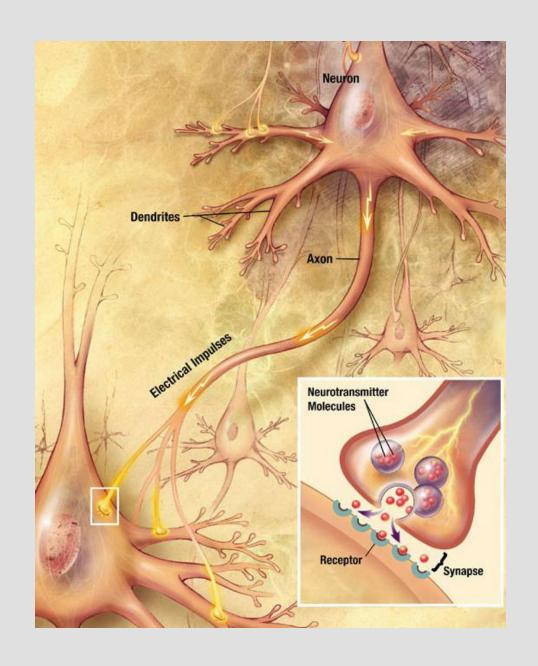
- Electrical impulses are received by neurons
- Neurons can:

excite (firing rate 个)

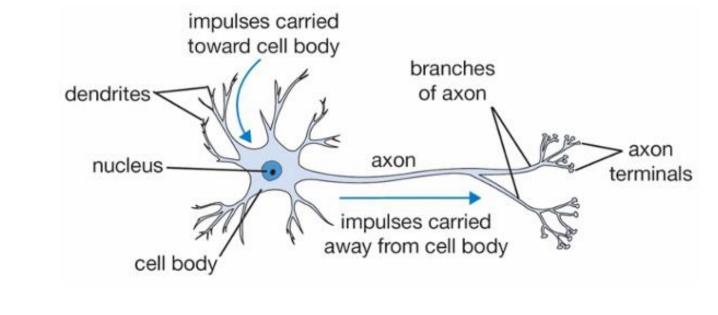
or

inhibit (firing rate \downarrow)

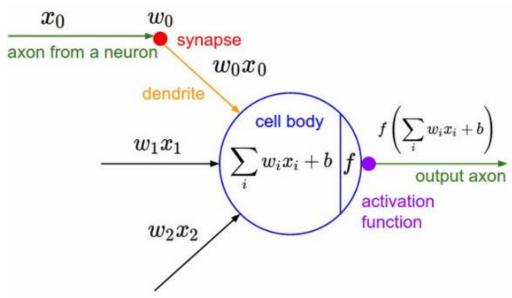
- Signal passes to other neurons
- Signal is sent through the nervous system



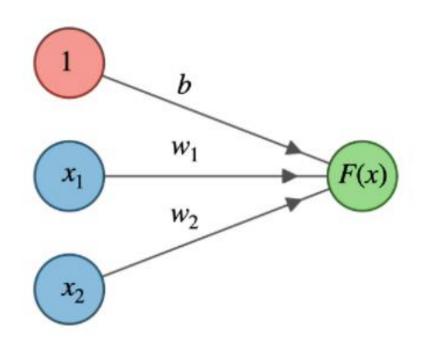
Biological Neuron



Artificial Neuron



Linear Regression



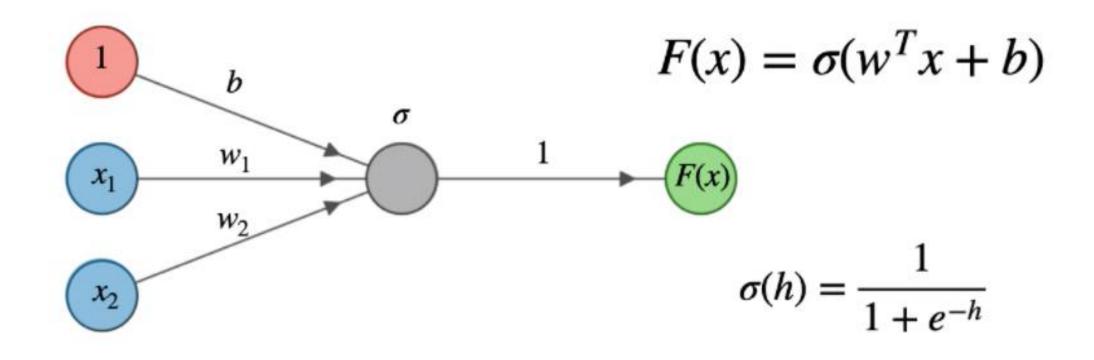
$$F(x) = w^T x + b$$

$$F(x) = w_1 \cdot x_1 + w_2 \cdot x_2 + 1 \cdot b$$

Input Layer ∈ R³

Output Layer ∈ R¹

Logistic Regression



Input Layer $\in \mathbb{R}^3$

Hidden Layer ∈ R¹

Output Layer ∈ R¹

Breast Cancer Classification

- Dataset: 10 features of breast cells, including
 - Radius
 - Texture
 - Perimeter
 - Area
 - Smoothness
 - ...
 - Labels (malignant or benign)
- Logistic Regression is 97% accurate at classifying cancer cells

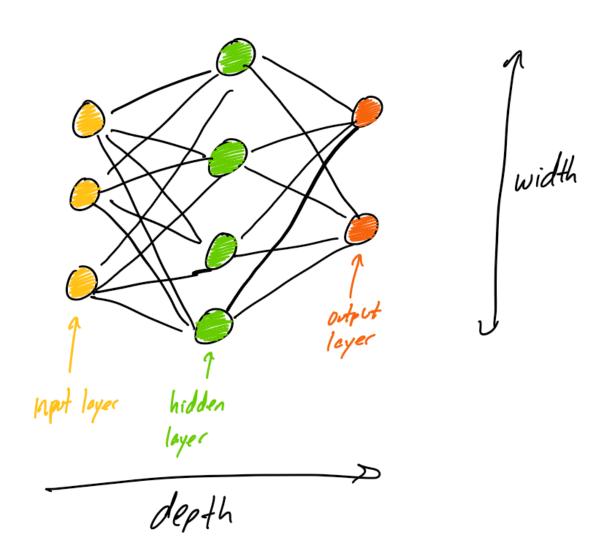
Training Classification Report:

		precision	recall	f1-score	support
	0	0.99	0.97	0.98	168
	1	0.98	0.99	0.99	258
accur	acy			0.98	426
macro	avg	0.98	0.98	0.98	426
weighted	avg	0.98	0.98	0.98	426

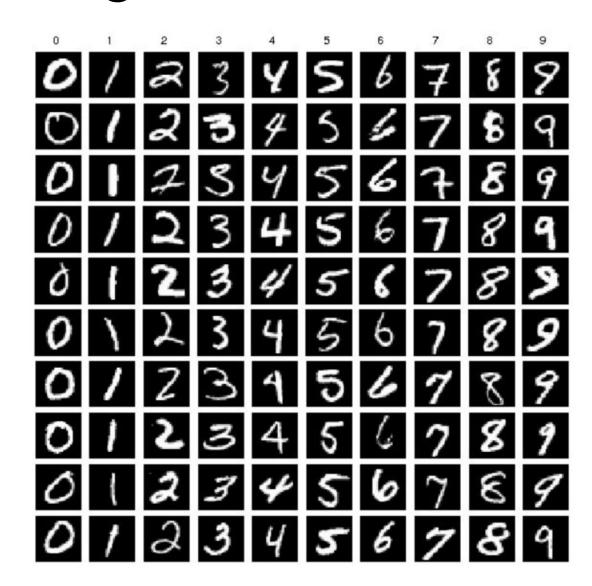
Testing Classification Report:

	precision	recall	f1-score	support	
0	0.95	0.93	0.94	44	
1	0.97	0.98	0.97	99	
accuracy macro avg weighted avg	0.96 0.96	0.96 0.97	0.97 0.96 0.96	143 143 143	

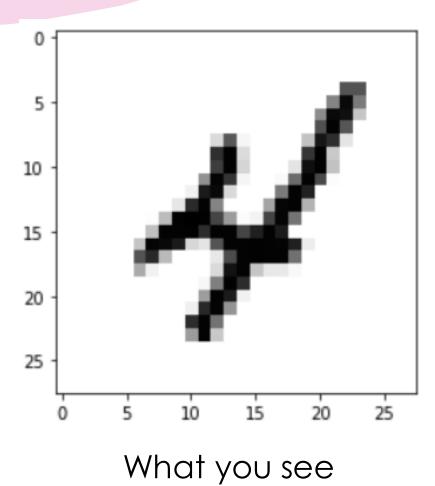
Neural Networks

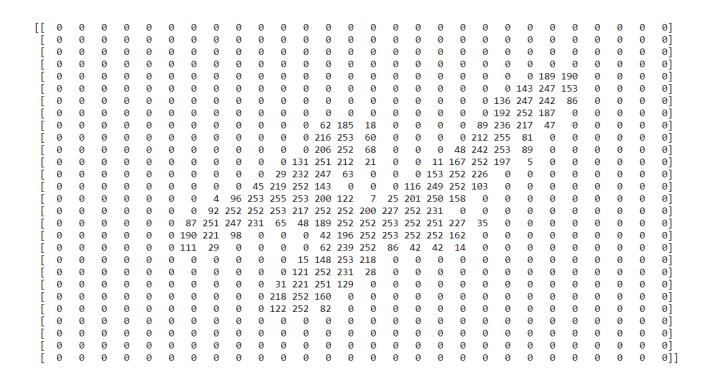


Handwritten Digit Classification

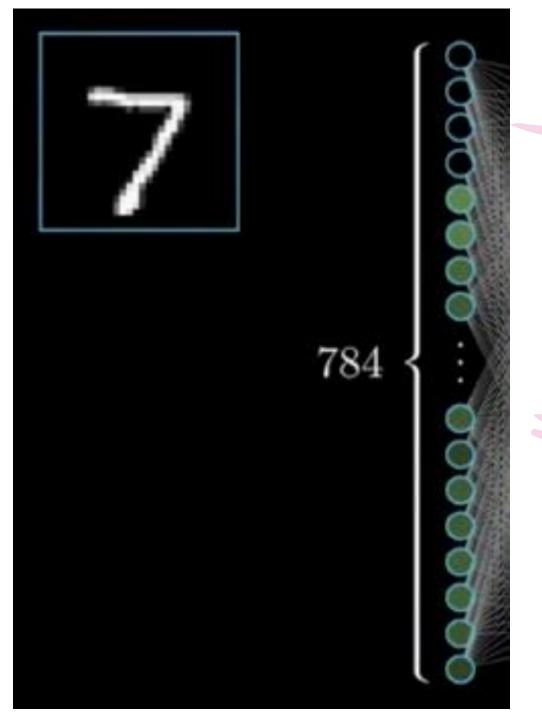


Computer Vision





What a computer sees



A Neural Network

- 784 inputs
 - one for each pixel
- 784+1 weights
- 10 neurons
 - one for each digit

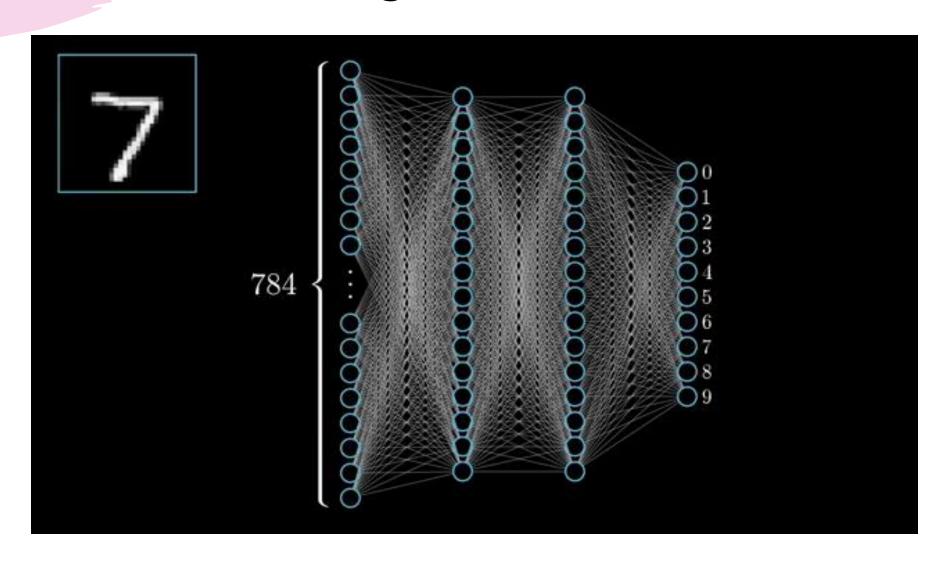
Logistic Regression's Performance

Training Classification Report:

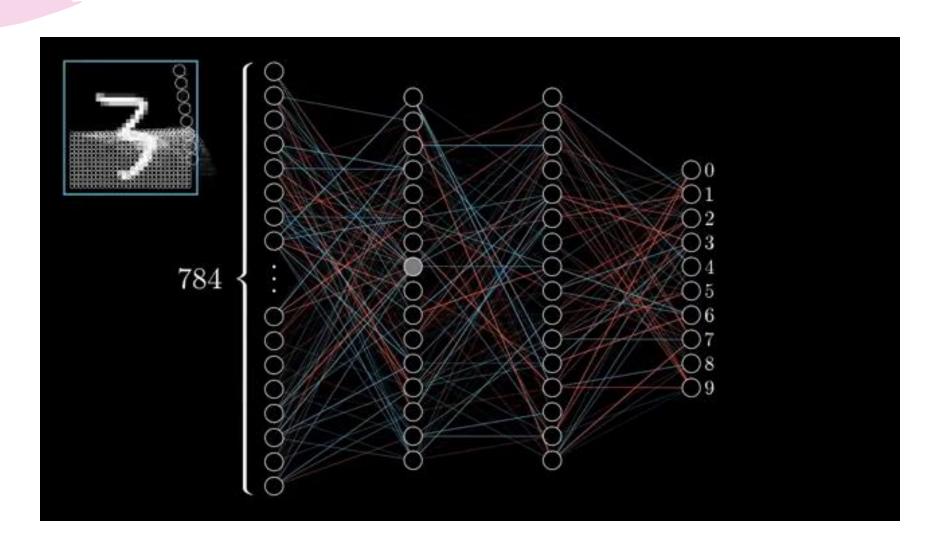
Testing Classification Report:

	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.97	0.98	0.98	5923	0	0.95	0.97	0.96	980
1	0.96	0.98	0.97	6742	1	0.96	0.98	0.97	1135
2	0.94	0.92	0.93	5958	2	0.93	0.90	0.91	1032
3	0.92	0.91	0.92	6131	3	0.90	0.92	0.91	1010
4	0.94	0.95	0.94	5842	4	0.94	0.94	0.94	982
5	0.91	0.91	0.91	5421	5	0.90	0.87	0.88	892
6	0.96	0.97	0.96	5918	6	0.94	0.95	0.95	958
7	0.95	0.95	0.95	6265					
8	0.91	0.90	0.91	5851	7	0.93	0.92	0.93	1028
9	0.92	0.92	0.92	5949	8	0.88	0.88	0.88	974
					9	0.91	0.92	0.91	1009
accuracy			0.94	60000					
macro avg	0.94	0.94	0.94	60000	accuracy			0.93	10000
weighted avg	0.94	0.94	0.94	60000	macro avg	0.92	0.92	0.92	10000

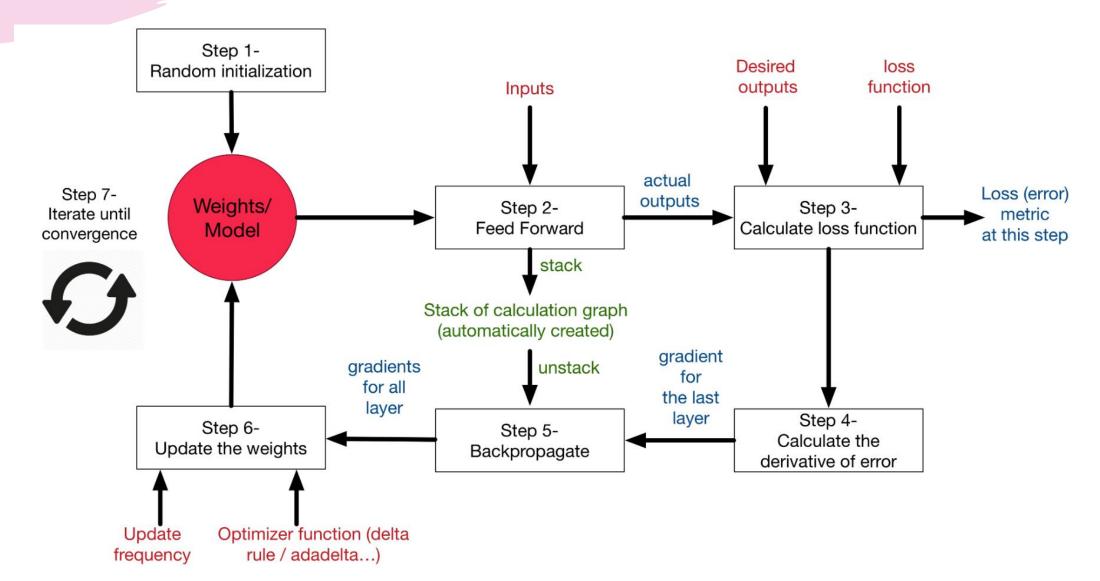
Feeding Data Forward



Cost (or Loss)

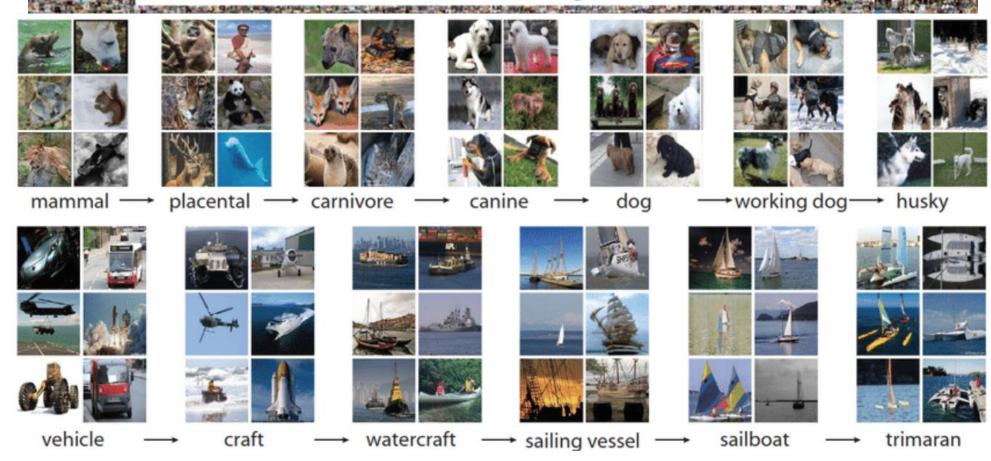


Training Neural Networks

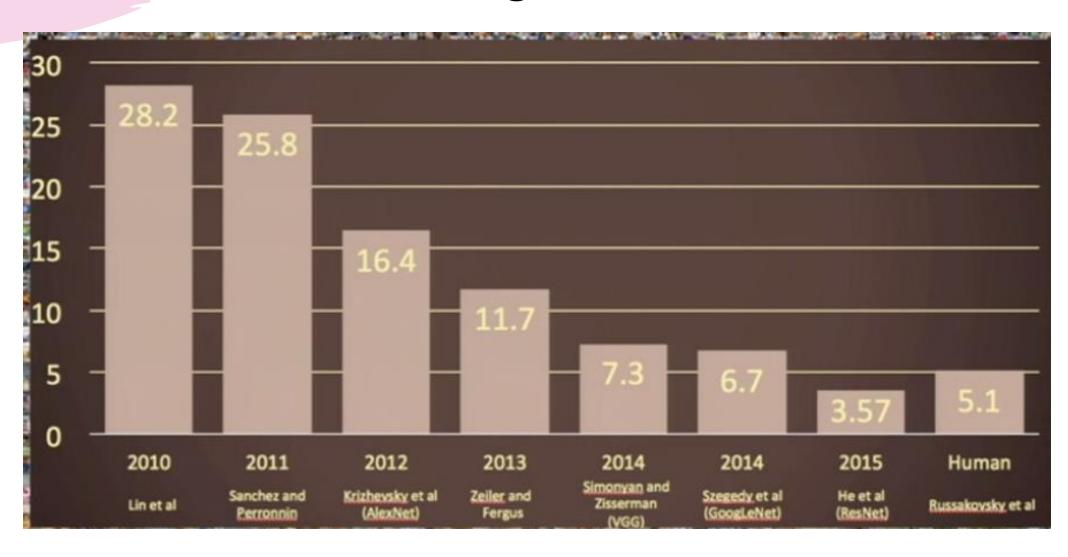


IM GENET Large Scale Visual Recognition Challenge

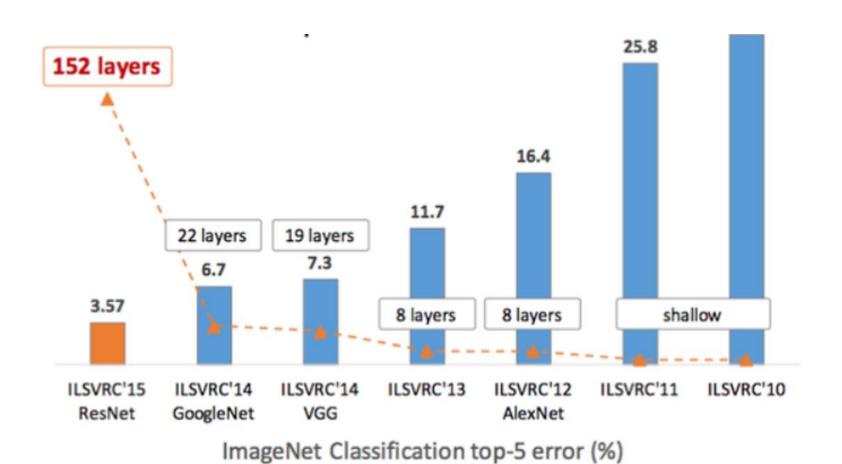
The Image Classification Challenge: 1,000 object classes 1,431,167 images



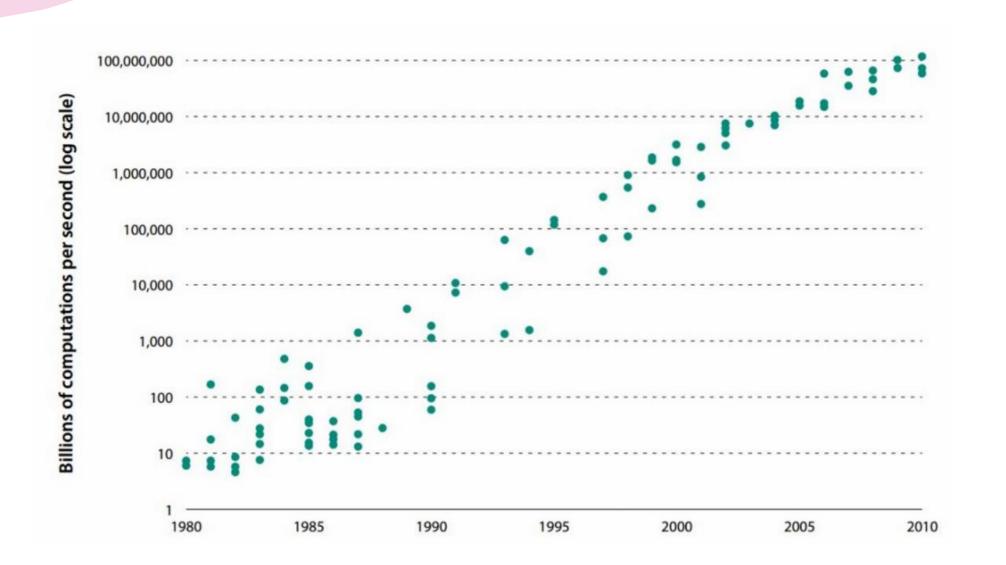
ImageNet



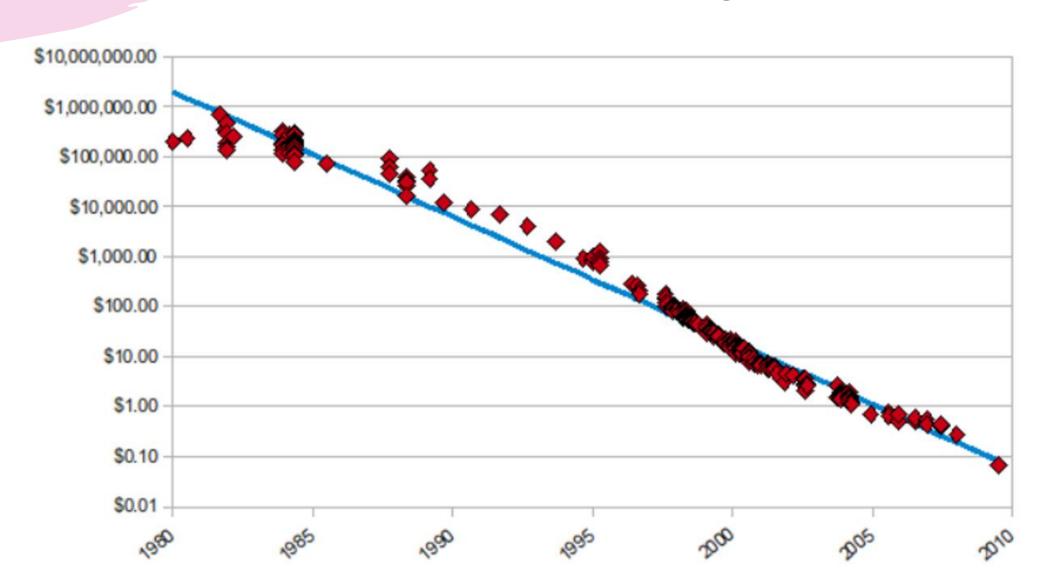
Deep Learning



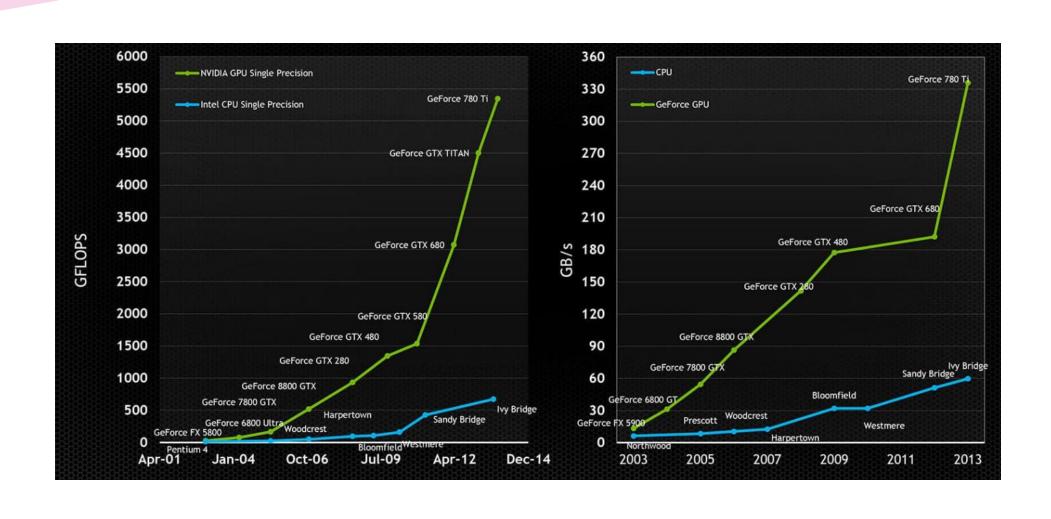
\$1 of Computing Power



\$ per GB of Storage

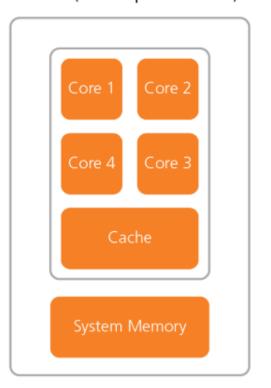


The Rise of GPU Computing

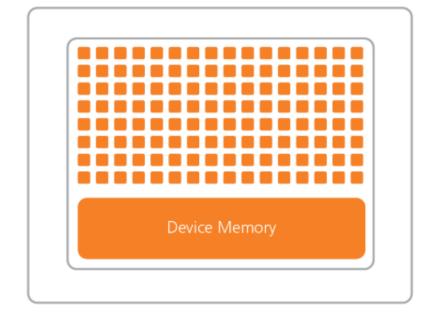


Why GPUs?

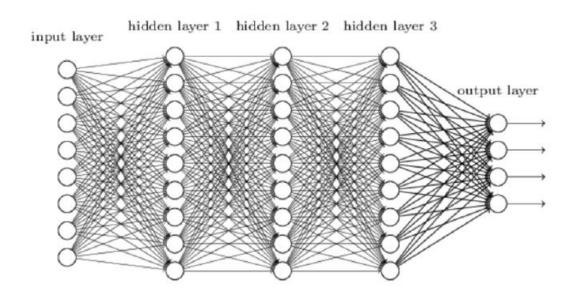
CPU (Multiple Cores)

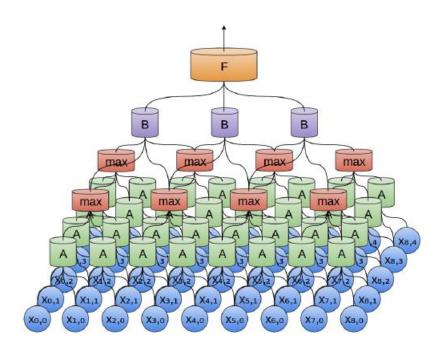


GPU (Hundreds of Cores)



Innovative Neural Architectures





Dysfunctional and Obsolete Satellites

There is no other area of human activity where we build something that's worth a half-billion dollars or a billion dollars, and never look at it again, never fix it, and never upgrade it

--Gordon Roesler (DARPA)

Current Project: On-Orbit Repair

Supported by U.S. Space Force through the Air Force Research Laboratory

Image Classification

(a) Spacecraft

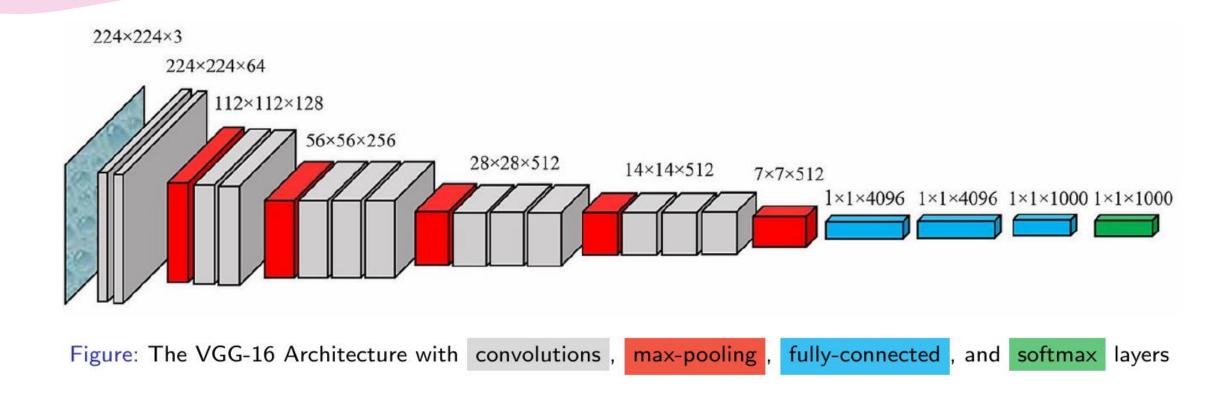
(b) Meteoroid

(c) Nozzle

(d) Fuel Tank

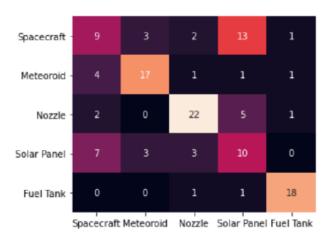
(e) Solar Panel

VGG-Net



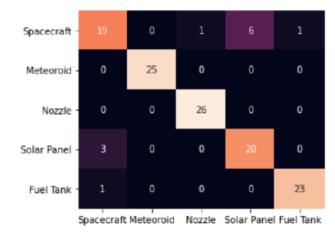
138m weights!

Performance



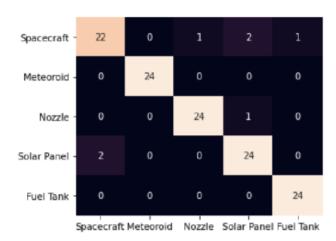
(a) NASNet Large

	precision	recall	f1-score	support	
Spacecraft	0.41	0.32	0.36	28	
Meteoroid	0.74	0.71	0.72	24	
Nozzle	0.76	0.73	0.75	30	
Solar Panel	0.33	0.43	0.38	23	
Fuel Tank	0.86	0.90	0.88	20	
accuracy			0.61	125	
macro avg	0.62	0.62	0.62	125	
weighted avg	0.61	0.61	0.61	125	



(b) VGG-16

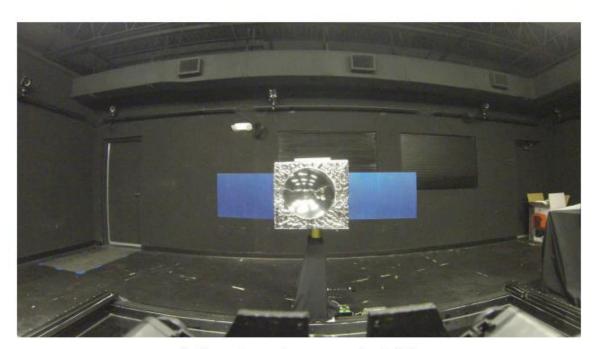
	precision	recall	f1-score	support
Spacecraft	0.83	0.70	0.76	27
Meteoroid	1.00	1.00	1.00	25
Nozzle	0.96	1.00	0.98	26
Solar Panel	0.77	0.87	0.82	23
Fuel Tank	0.96	0.96	0.96	24
accuracy			0.90	125
macro avg	0.90	0.91	0.90	125
weighted avg	0.90	0.90	0.90	125



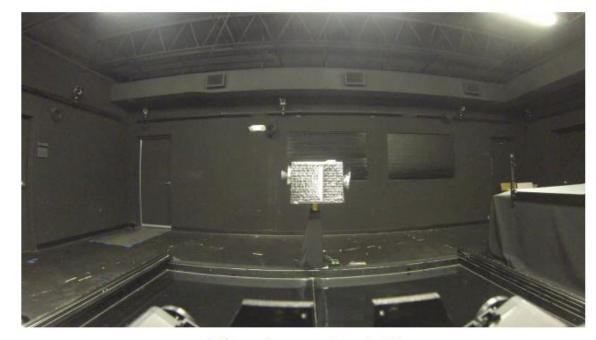
(c) VGG-19

	precision	recall	f1-score	support
Spacecraft	0.92	0.85	0.88	26
Meteoroid	1.00	1.00	1.00	24
Nozzle	0.96	0.96	0.96	25
Solar Panel	0.89	0.92	0.91	26
Fuel Tank	0.96	1.00	0.98	24
accuracy			0.94	125
macro avg	0.95	0.95	0.95	125
weighted avg	0.94	0.94	0.94	125

- 1. Trim the videos and extract still frames
- 2. Shape frames to $224 \times 224 \times 3$ and standardize in each color channel
- 3. Select some frames with only 1 class displayed (experiment: solar or nozzle)



(a) only solar panel visible



(b) only nozzle visible

A Test...

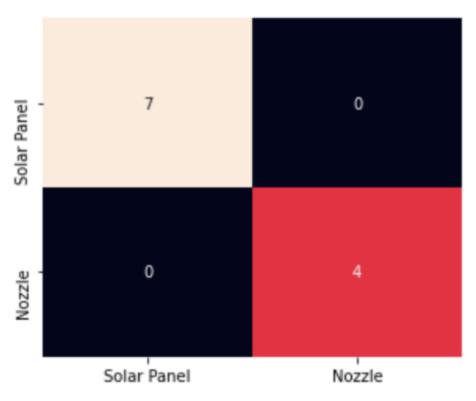
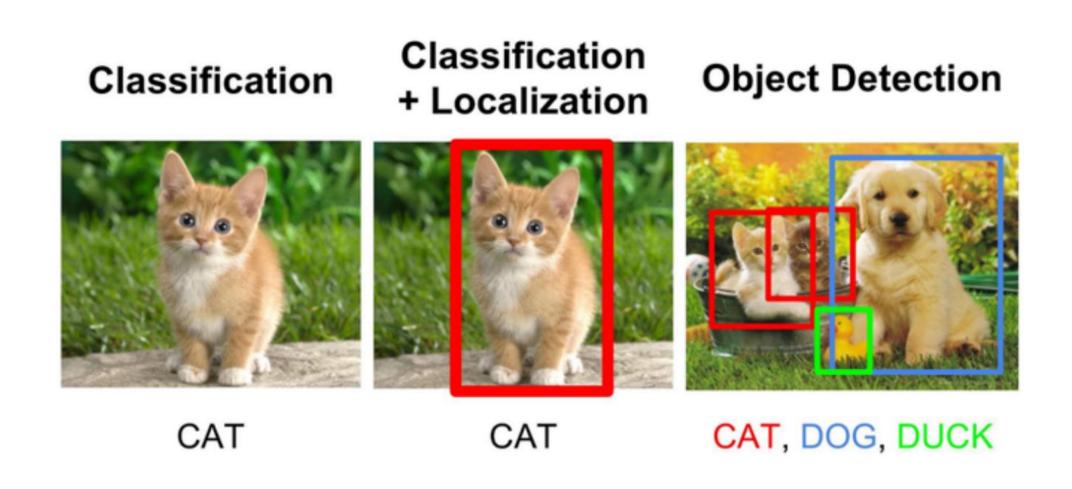


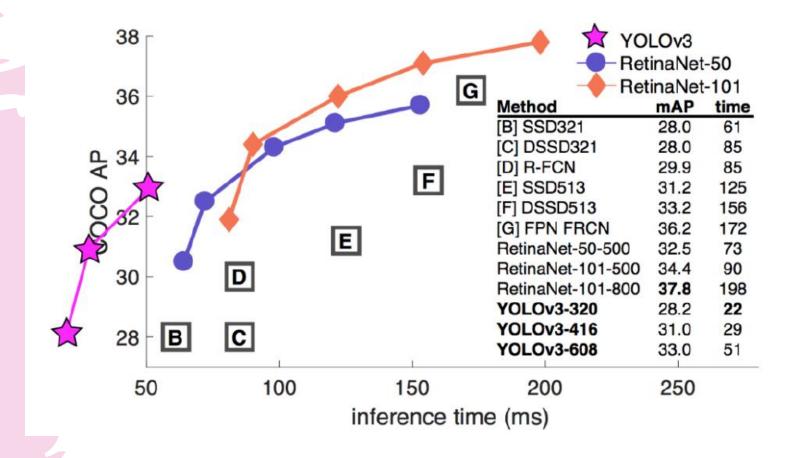
Figure: A VGG-19 experiment on a small set of data is perfect

A Harder Problem...

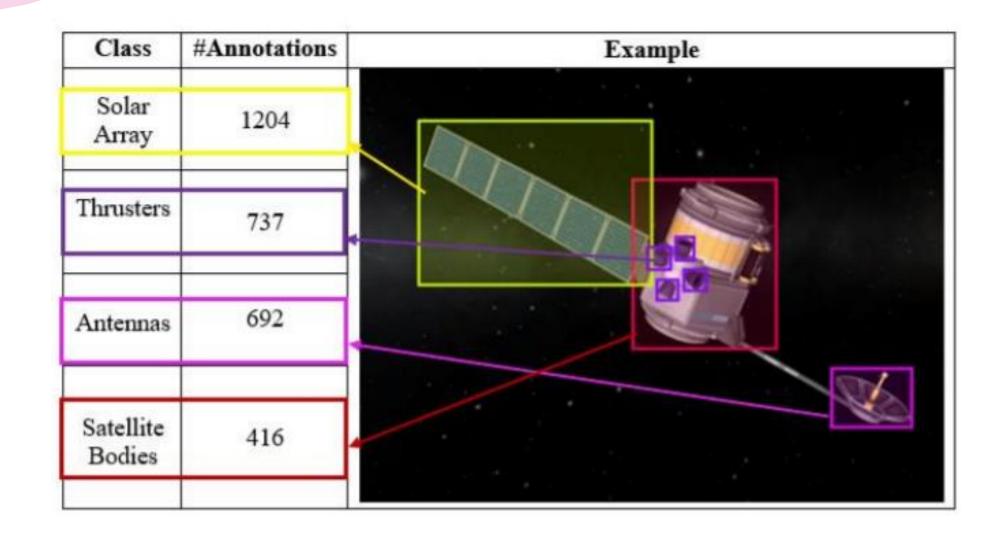


Object Detection Algorithms

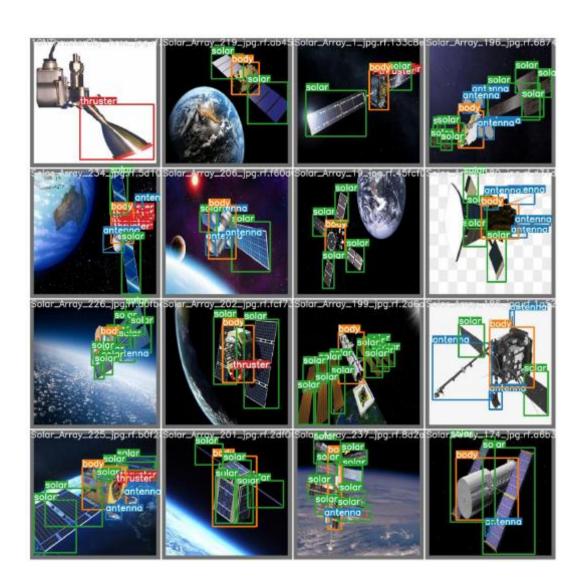
- You Only Look Once (YOLO) is the fastest
- YOLO is ideal with weak on-board computers



Data for Object Detection



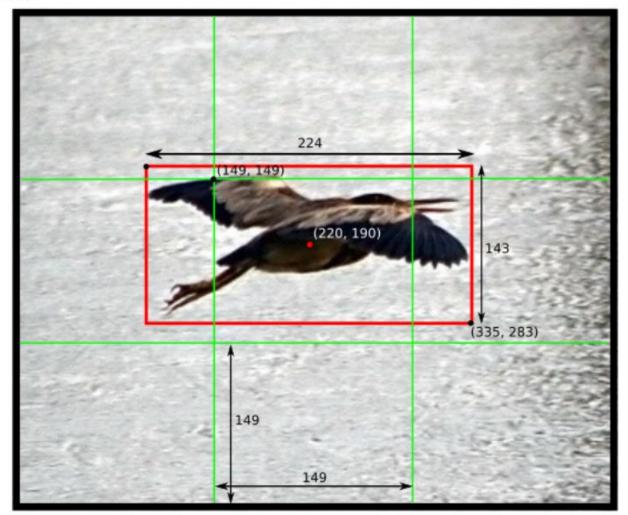
Our Dataset



Bounding Boxes

- Is there an object in the box?
- Where is the center (x,y)?
- How wide is it?
- How high is it?
- What is the object?

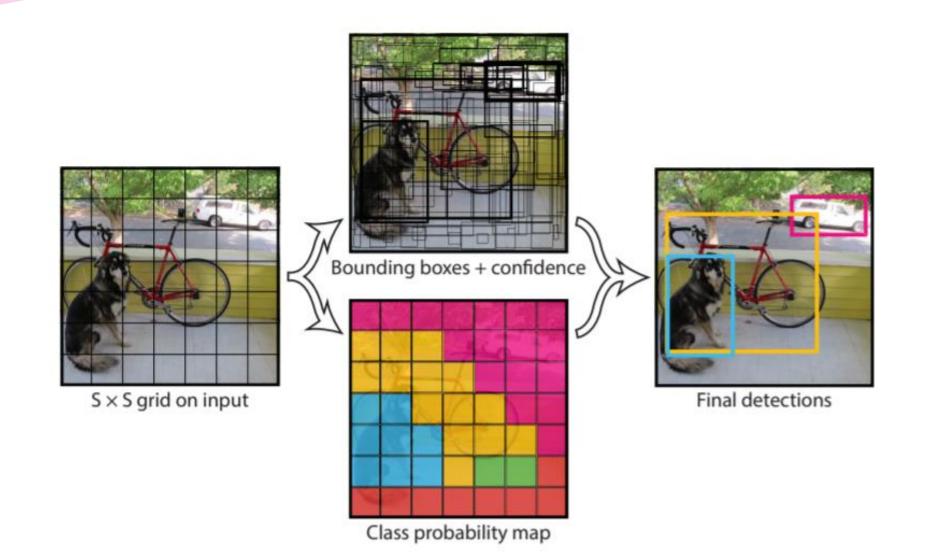
(0, 0)



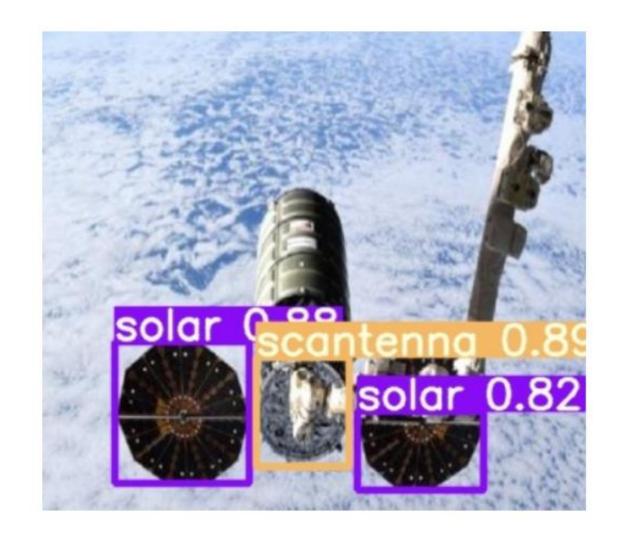
(447, 447)

$$y = (1, 220, 190, 224, 143, 0, 1, 0, 0)$$

How YOLO Works

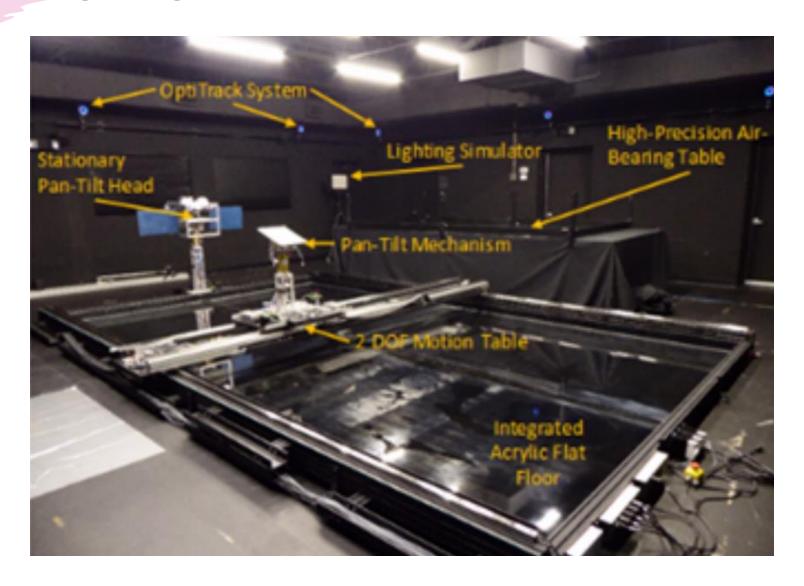


Testing Examples

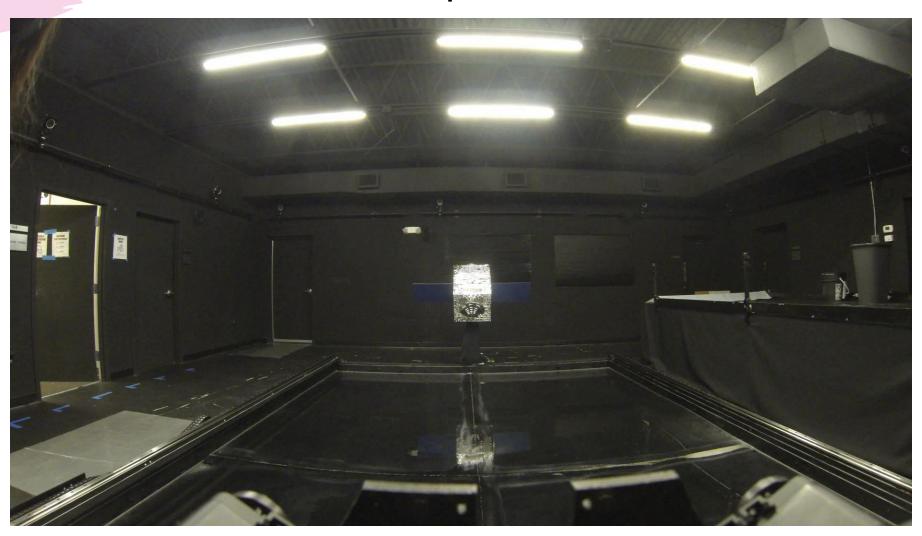


Unconventional Data

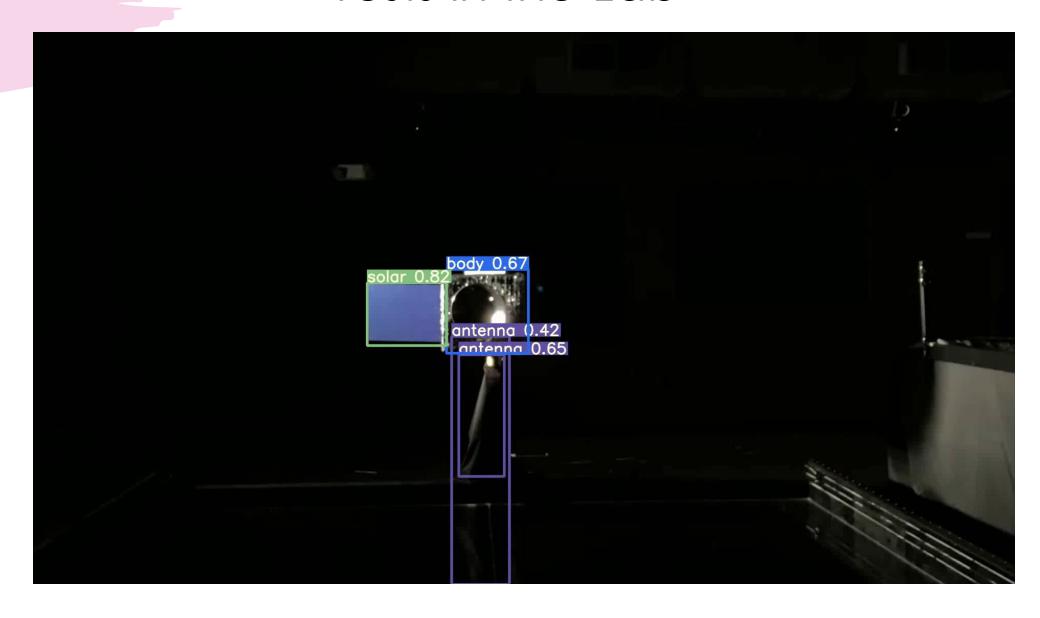
ORION Lab at Florida Tech



Lab Capabilities



Tests in the Lab



Future Plans

More testing with on-board hardware

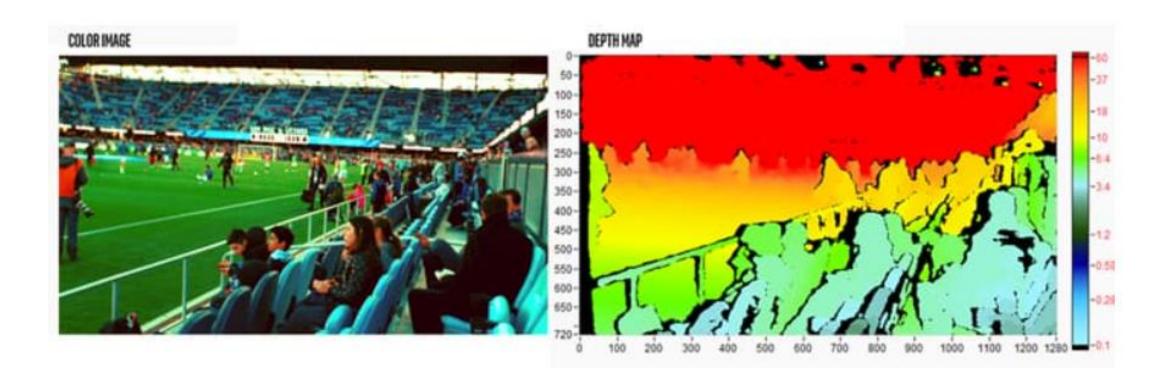
Future Plans

Strap the Computer/Camera to a Drone

Flightpath Planning, Guidance, Navigation

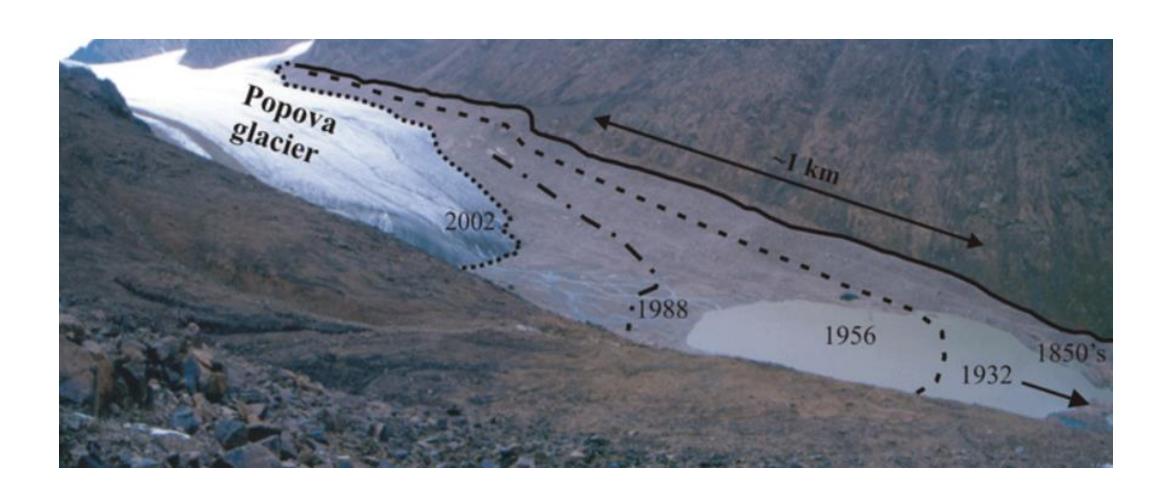
Future Plans

Exploit Depth Data

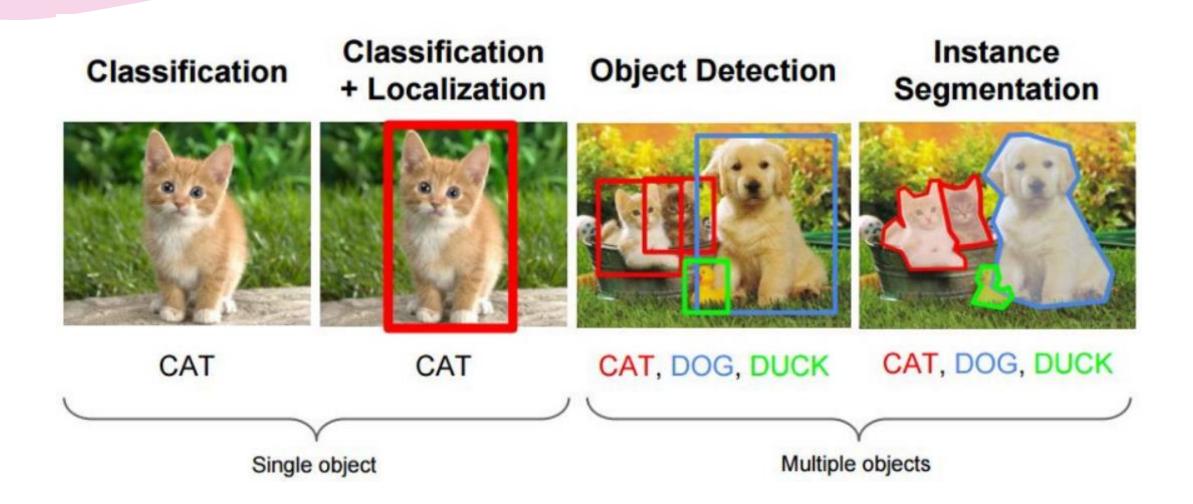


O'Higgins Glacier Ice Flow

Glacier Recession



An Even Harder Problem

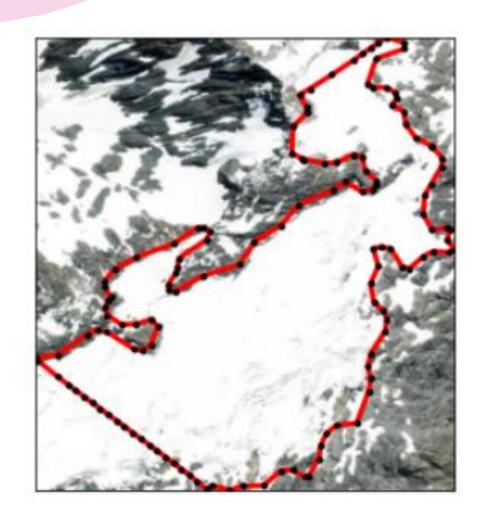


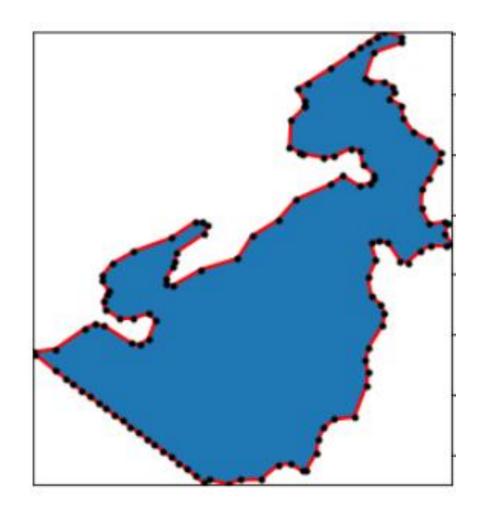
Questions

- Which glaciers are changing over time?
- How are they changing?
- How quickly are they changing?
- With 10,000+ glaciers, can humans do it manually?

Current work here supported by the National Science Foundation

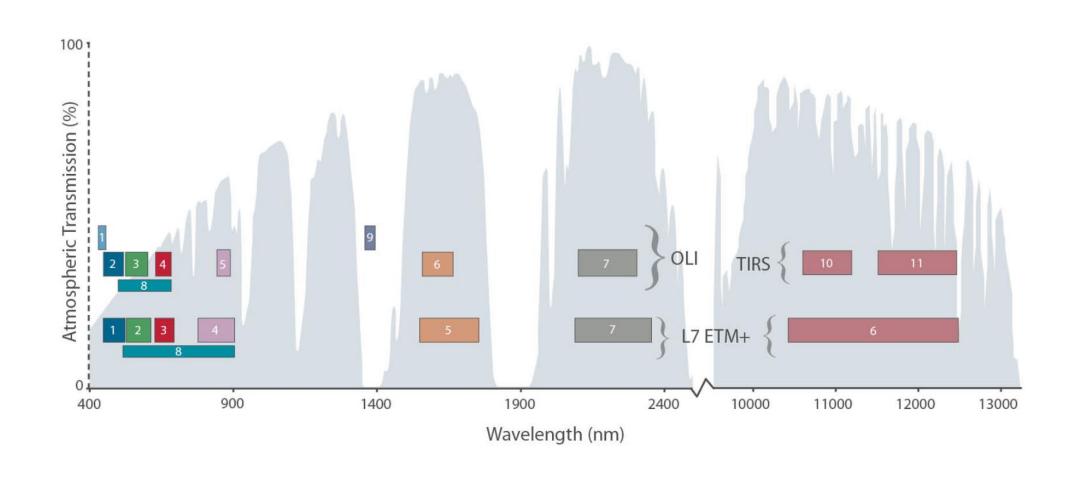
Current Project: Measuring Glaciers



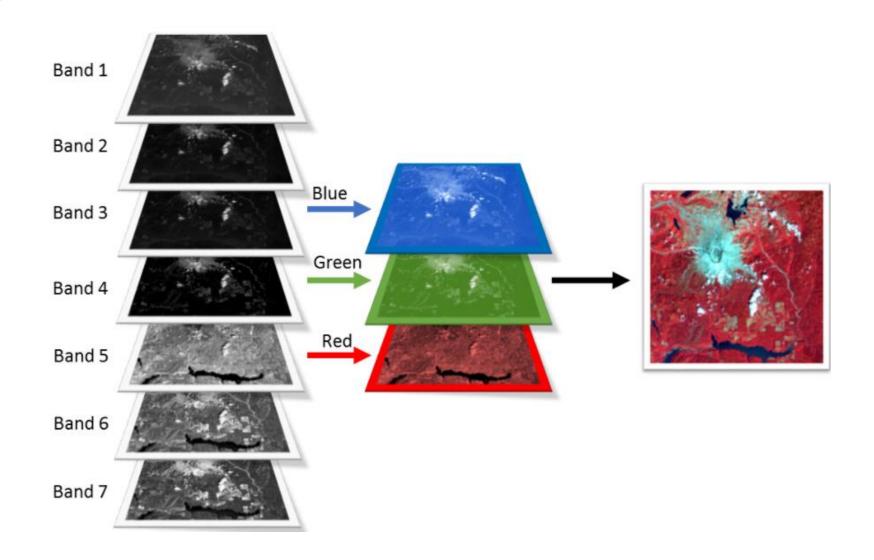


Data Source: Landsat

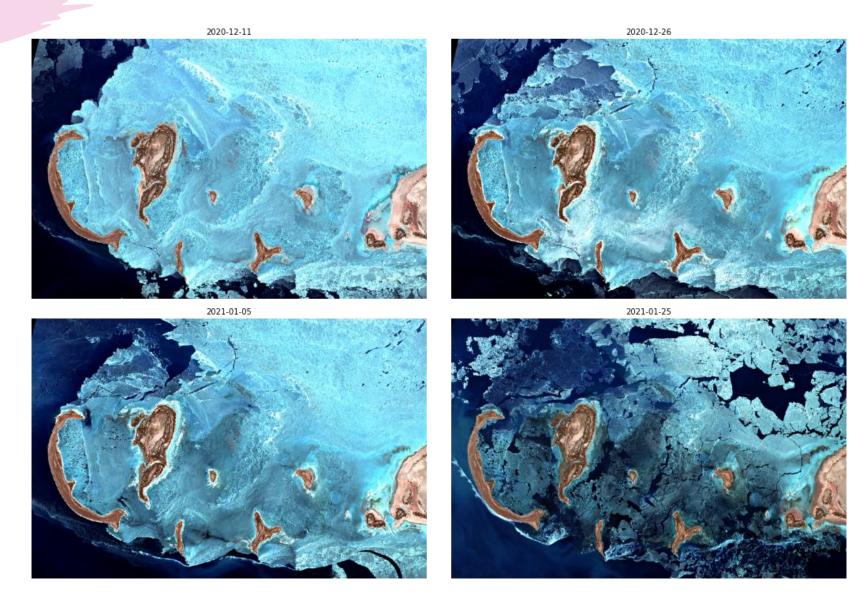
LANDSAT Satellite Imagery



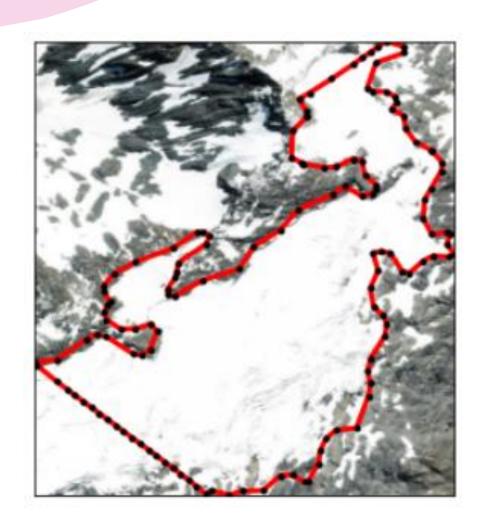
7-channel "Pictures"

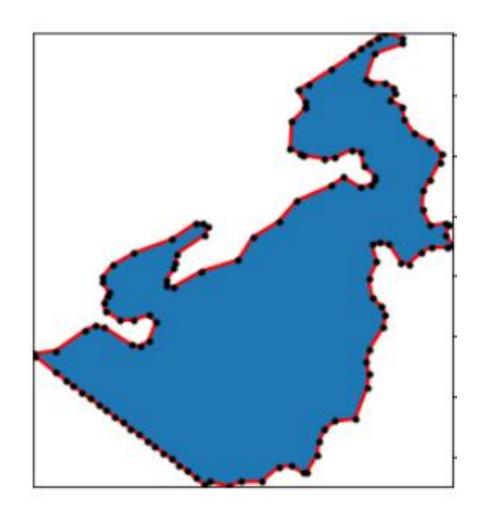


Time-Lapse Satellite Images



Predicting Polygons (Masks)

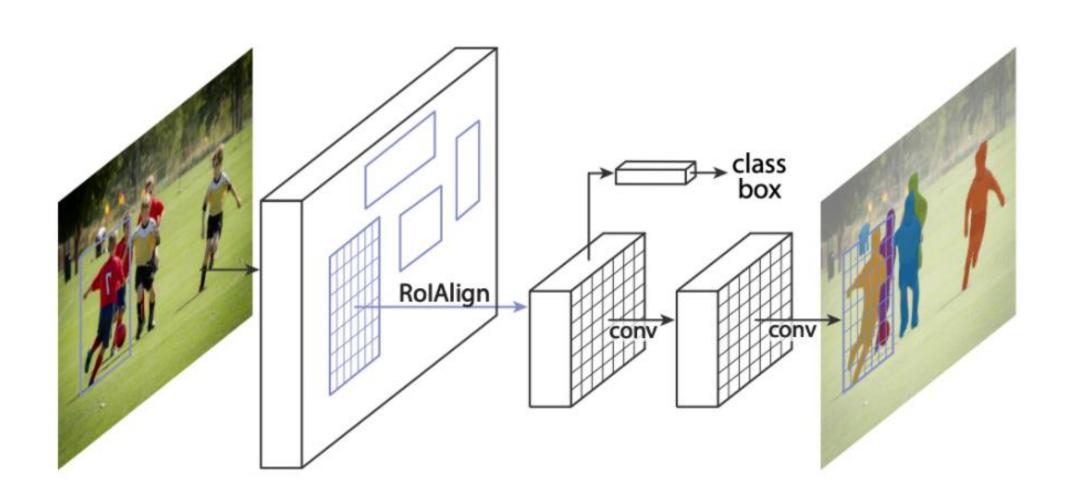




Data for Image Segmentation

```
"annotations": [
        "id": 125686,
        "category_id": 2,
       "iscrowd": 0,
        "segmentation": [[164.81, 417.51, 164.81, 4
        "image_id": 242287,
        "area": 42061.80340000001,
        "bbox": [19.23, 383.18, 314.5, 244.46]
```

Mask R-CNN



Questions?

Contact

Ryan T. White, Ph.D.

<u>rwhite@fit.edu</u>

<u>www.ryantwhite.com</u>

<u>https://www.linkedin.com/in/ryantwhite5/</u>

