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-
Probability Space

(Q, F,P) is a probability space if
e ) is any set (the sample space)

e F is a o-algebra (a collection of subsets of {2 representing events)
o PP is a probability measure

o P: F —[0,1] assigns a probability to each event

In short, a probability space is just a measure space where P(Q) =1

Operational Calculus in RWRL 014 248



Random Variables
A real-valued RV is a measurable function X : (Q, F) — (R, B(R))

@ Technically, for each E € B(R), X Y(E)={X € E} € F
X

e E.g., if E=[—00,t], the CDF of X is

P{X € B} = P{X € [~o00,t]} = P(X < )
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Expectation

o If X is P-integrable, X € L'(P), its expectation is defined as

mmzéxm

@ This generalizes the possibly more familiar notions of expectation

E[X] = ijIP){X =7} (for discrete RVs)
jEL

E[X] = / xf(x)dz (for continuous RVs)
R
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-
Properties of RVs and Expectation

For g,h € C7! (R, B(R)) (measurable functions), X and Y RVs
Q goXisaRV
@ E[14(w)] = J, dP = P{4}

@ X and Y independent = E[g(X)h(Y)] = E[g(X)]|E[A(Y)]
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Conditional Expectation

The conditional expectation E[X|Y] is the expectation of X given Y

Q E[E[g(X)|Y]] =E[g(X)] (Double Expectation)

@ Elg(X)f(X,Y)|X] = g(X)E[f(X,Y)|X], as.
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-
Probability Transforms

@ The probability-generating function (PGF) of a discrete RV X is
g9(z) =E[z*], [l2] <1

o P{X =k} = £2© (Distribution)

@ The Laplace-Stieltjes transform (LST) of a continuous nonnegative
RV X is L(0) = E[e=X], Re(6) >0

o P{X <t} =1L;"! {@} (t) (CDF)
o E[X*] = (-1)k lim LF) () (Moments)
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|
Papers

We follow the ideas of the papers

@ J. H. Dshalalow and R. White. On Reliability of Stochastic Networks.
Neural, Parallel, and Scientific Computations, 21 (2013) 141-160

@ J. H. Dshalalow and R. White. On Strategic Defense in Stochastic

Networks. Stochastic Analysis and Applications, accepted for
publication (2014)
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Random Walks on Random Lattices

(a) Random Walk (b) Random Lattice
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random_walk.avi
Media File (video/avi)


Stochastic Network Cumulative Loss Model

@ {t1,t2,...} — point process of attack times
@ ny — iid number of nodes lost at t; with PGF g(z) = E [2"].

@ wj, — iid weight per node with LST I(u) = E [e™ "]

ng
o wy = Y. wji — total weight lost at ¢

Jj=1
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The Cumulative Loss Process

We use a (multidimensional) compound Poisson random measure of rate
A e, for E € B(R>),

13

o n(E) = 3 (nk, wi)er, (E)

k=1

@ &4, is the Dirac (point mass) measure,

1 :tp€eF
Etk(E):{ 0 tkgéE

e 7)([0,1]) is the cumulative losses of nodes and weight up to time ¢
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The Cumulative Loss Process (cont.)

n([0,t]) is a monotone increasing process on N x R,

Weight Loss (W) tio

Node Loss (N)
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-
Delayed Observation

The process is observed upon a delayed renewal process

e T = i&m

n=0
o Ay =T, — Tp_1 are iid with LST L(#), k € N

e 7o = Ag is independent of Ay, k>1

The process of interest is the embedded process

o Z =3 n((Th-1,Tn])er, = > (Xn, Ya)en,
n=0 n=0

o (N,,W,) = Z(|0,7,]), the value of the process at 7,
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Delayed Observation as an Embedded Process

We consider the (green) embedded process

w
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-
Observed Threshold Crossings

@ Each component has a threshold: M for nodes, V' for weights

@ The first observed passage time (FOPT) is 7,, where
p=min{n: N, > M or W,, >V}

@ Threshold crossing by the observed (embedded) process Z
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|
Observed Threshold Crossings (FPT vs FOPT)

.
.
.
.
.
.

FPT

M

//ip = FOPT

Ryan White
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Joint Transform of Each Observation Epoch

0 1(2,0,0) =E [X1e-Vie=081] = ...

I\/Ictglcf

+ X4

=L+ X— Mg (2l (v))]
@ For Ay, the result is yo(z,v,0) = Lo[0 + X — Ag(2l(v))]
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Joint Transform of Each Observation Epoch

o 7(2,0,0) =E [e "M 02]
=E [e"ME [zX e |A4]] (Double Expectation)
—F |:670A1]E [znle—v(w11+~~+wn11) N, ane_v(w1J+...+’LUnJJ) Al:H
=FE [e’MlE [(g (2L (v)))” ‘A1H (ng's and wj's are Jid)
=E e_(9+’\_>‘9(21(”))m1} (J is Poisson with parameter AA;)

L0+ X—Xg (2l (v))]

@ For Ay, the result is vo(2,v,68) = Lo[0 + X — Ag(21(v))]
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Functional of Interest

@ We seek a joint functional of the of the process upon 7,_1 and 7,

(b(a07 «, /80) /Bv h’Ov h) =K aONpilaNpe_EOWp71_BWpe_hOTﬂil_th
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Whi &7

(CY(], 7607/3 h07 ) |: ONp_laNpe_IBOWp_I_'BWpe_hOTp_l_th

® leads to marginal PGFs/LSTs,
o ®(1,0,0,0,0,0) = E [ar]
o &(1,1,50,0,0,0) = E [e-FoWo1]
o ®(1,1,0,0,0,h) = E [e~"7]

which lead to moments and distributions of components of the process
upon 7,1 and 7,
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-
Goal and Operational Calculus Strategy

@ The goal is to derive ® in an analytically or numerically tractable form

@ Strategy to derive P,

H Assumptions
e

o — U U (convenient form) LN (tractable)

for an operator H to be introduced next
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.
‘H Operator

We introduce an operator,

Hpg = LCq 0 Dy
where
£,(9(a) ) = vL4(9(@) =y [ sla)e™ ™ dg
q=0
Dp{f(p)}(x) = (1 —2) ) P f(p), |z <1
p=0

for a function g(q) and a sequence f(p).
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Inverse Operator

@ D, has an inverse which can restore f,
o DI () =lim o 42 (t5()) ke
o DY (Dp{f(p)}(x)) = f(k)

@ A key asset of the inverse:

0 k
D];(Zaja:j> = Zaj
§=0 J=0

@ The inverse of the composition H,, is
_ 1 (1
Mt (Vo) (r0) = £ (P2 (W) ) (@
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Decomposition of ¢

o Let u=inf{n: N, > M}, v=inf{n: W, >V}
@ Decompose ® as

) [aoNp_laNpefﬁowp_l7/3Wp€fhorp_1fhrp}
Ny-1 N, —BoW,_1—BW,—hoTu_1—hT
:E[ao“ o Vte BoWyu—1—BW,—hoTu—1 u]_{#<y}
1K [aé\h—laNMe—ﬁgWH,l—BWM—hoTu,l—hm 1{u=v}]
NVfl N, _ﬁOWufl_ﬂWy_hOTufl—hTu
+E [ao a've 150}

= (I)/J<l/ + q),uzz/ + (I),u>z/

o We will derive ®,,,, of the confined process on the trace o-algebra
Fn{p<v}
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|
Decomposing Further, Applying H,,

e Introduce u(p) = inf{j : N; > p}, v(q) = inf{k : W}, > ¢}

_ Nj_1 N; —BoW;_1—BW;—hoT;_1—hT;
Pu)<via) = D ZE[%J fayem TR e Jl{u(p)zjm(q):k}]
Jj>0 k>j

o Next, apply Hpq to D, p)<u(q)

@ By Fubini’'s Theorem, H,,, can be interchanged with the two series
and expectation (an integral w.r.t. P)
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|
Calculating H,, (1{,,,(p):j,y(q):k}) (z,9)

Hpq (Liup)=juia)=k}) (,9)

= Hpg (1{Nj71§p}1{Nj>p}1{Wk_1§q}1{Wk>q}> (z,y)

Nj—1 W

=y(1l—2x) Z a:p/ e Ydq

p=N,_1 q=Wpi—1

= (M-t — 2"5) (e7¥Wh-1 — e ¥Wr) (Partial geometric series)
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|
Independent Increments in Hyy (P00 <u(g)) (2, Y)

Hpg (q)u(p)<v ZZE alVs 7 Paly =y m B =hory =1 =h;

j>0k>j

X (QL“NJ'*1 — xNj) (e_yw’“l — e_WB’f”

— ZE [(aoax)Njfl e_(ﬂ0+6+y)wj71_(h0+h)7'j71:|
j=0

x & [aXJ‘ (1 — ij) e*(my)Yj—hAj]

X ZE [e_y(yjﬂ"'“""y’“*l)] E [1 — e—ka]
k>j
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.
Simplifying Hpy (P <u(a)) (2, Y)
@ Denote

v =7 (awaz,fo+ B +y, ho + h)
F:y(a:ﬁ,,@—i—y,h)
' =y(a,8+y,h)

@ Then we can simplify the expectations as

_ o o _ 1 j=0
E Nj—1 ,—(Bo+B+y)W;_1 (ho+h)Ta—1} = ? .
_(aoax) e vy §>0

IE_oz J(1—x J)e( vY; J}—{lﬂ I j>0

E;wmﬂ+ﬁn4q:7#PuL%m,k>jzo

E[l1—e ] =1-7(1,4,0), k>j>0
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Deriving ®,,,

@ Implementing the notation, we see the 5 and k series become

rr—-r
1_

Iy =T+ (I' =Dy v =Ty — Lo+
i>1

(1= v(1,5,0) Y+ (1,5,0) =1

k>j
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|
Bounding L(9)

Let v € C and H = {A €[0,1]} € F, then

Q

< [ llera )
Q

< / e—Re(ﬁ)A1 dP (3)
Q

< [ enensiapy [ eros g *)

</ o

< / dP+e ) [ qp )
H HE

<P{A; <1} +e B (1 —P{A; <1}) <1 & Re(d) > 0
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|
Bounding L(6 + A — Ag(zl(v))

@ Assume Re(0) >0, 1 > ||z]|, and Re(v) > 0.

o Clearly, Re(0 + XA — Ag(zl(v)) > 0 if Re(8) > 0 or Re(g(zl(v))) < 1.

Theorem (Schwarz Lemma)

Let g (z) be an analytic function in the unit ball B(0,1) with ||g (2)|| <1
and g (0) = 0. Then g (2)]| < [12]| in B(0, 1)

o Re(g(zl(v))) <|lg(zl(w)Il < )] < llzllli(v)]| < 1if
llz|l <1 or Re(v) > 0.
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N
Result for ®

@ Solving for ®,—, and ®,-, analogously and adding to ®,,,

¢ =H,, (c& - Ty + 1107 (¢! —F)) (M,V)

where

v =7 (xax,Bo+ B+y,ho+h)
I' =~(ax,B+y,h)

¢' =(az, B, h)
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Results for a Special Case

To demonstrate that tractable results can be derived from this, we will
consider a special case where
o Ay, € [Exponential(u)] = L(0) = 45

az

e ny € [Geometric(a)] = g(z) = %5, (b=1—a)

e wjj, € [Exponential(§)] = I(u) = &%
e (No, Wy) = (0,0)

Recall v (z,v,0) = L[0 + XA — Ag (21 (v))]
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Theorem 1

@z@ﬂ@ﬁmﬁﬁ%:EFmémwfﬁﬂ

:1_<1_ i v+£(1—bz))
w40+ Av+E(1 —caz)

bu aAlL
(1+A+M+XA+MNA+m¢V”ﬂO=
v+ € clzg‘ Q(M —1,¢12£V) ‘e—(v—l-ﬁ(l—clz))v
¢(Z,U,9):v+f(1—clz)_ v+ E(1—cr12)

(V[P -1+ 0)V)]

(v +E&(1 —c12))(§ +v)M-1 7
_ A+ A+ b(u+0)

A+0 T At pu+e

c1 )

and Q(z,y) = Flsg(”xl)’) is the lower regularized gamma function.
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Corollaries: Marginal Transforms

®(1,2,0,0,0,0) = E [z""]
_ 2Q(M —1,2¢V)e =2V 4 2MP(M —1,£V)
B p+N—(\+bp)z

®(1,1,0,v,0,0) = E [e7*"r]
A+ bpw + alué(l,v,0)
 afp+ (A +p
®(1,1,0,0,0,0) = E [e—eﬂ
0

—1- 1
u+9[+

bu aiug(1,0,6)
A4+00 " A+ b0)(A+0)
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-
Useful Results: CDF of Observed Passage Time, 7,

F, (0) =P{r, <}

M—1 M- 2 k k
=AP(M —1,6V) Y ¢;d;(9) + e k, Zdﬂsj
j=0 k=0 7=0
where
M—1 . .
cj = < , >(a)\)JbM1]
J
k L
d; = (j)(a)\)kaJ

—

(Aiwp(j +1, (A= p)9)

1
¢;(9) = WPU +1,M9) —
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Useful Results: Means at 7,

o B[N, = 2% 4 M — (M~ 1)Q(M — 1,EV) + EVQ(M — 2,£V)

°o E[W,] = % = E [N, Efwy1]
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Simulation

We simulated 1,000 realizations of the process under each of the some sets

of parameters (A, p,a,&, M, V') and recorded the sample means:

Parameters | E[N,] | S. Mean | Error | E[W,] | S. Mean | Error
(1) 989.08 | 988.82 0.26 | 989.08 | 990.06 0.98
(2) 990.63 | 990.39 0.24 | 990.63 | 990.27 0.36
(3) 989.28 | 989.92 0.64 | 989.28 | 988.97 0.31
(4) 989.08 | 989.08 0.00 | 989.08 | 989.68 0.31
(5) 503.00 | 502.73 0.27 | 1006.00 | 1005.04 | 0.96
(6) 1002.00 | 1001.57 | 0.43 | 501.00 | 500.91 0.09
(7) 803.00 | 802.68 0.32 | 803.00 | 802.67 0.33
(8) 752.00 | 752.10 0.10 | 752.00 | 751.68 0.32
(9) 493.57 | 493.46 0.11 | 987.14 | 986.59 0.55
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-
Auxiliary Threshold Model

We introduce another threshold M; < M with 1 = min{n : N,, > M;}

//i, = FOPT

w

\4

WY AR
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-
Auxiliary Threshold Model

We will be concerned with the confined process where 11 < p,

w

\4

T T

mm<p

M,

Ryan White
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Functional of Interest

Our functional of interest will be similar to before, but containing terms
associated with the auxiliary crossing at p

q)u1<p = ¢M1<p (207 z, g, &, Vg, U, ﬂ()? 57 907 07 h07 h)

=K |: Zévulillefvl aévpilaNp‘ e—UoW,ulfl—’UW“l ‘e—BOWpfl—BWp

—00Tu, —1—0T ‘fhor _1—hT

A new capability is to find

Dpr>p (1,1,1,1,0,0,0,0,0,~h,0, h) = E [~ (=)
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Strategy and Model 1: Constant Observation

We use an operator H,,, = LCs o Dy 0 D,, adaped to work with the
additional discrete threshold, but the path to results remains the same

. -1
Assumptions

H . H
Dy —= VU, U, <, (convenient) — ®,,, -, (tractable)

In this model, we have

o Ap =ca.s.

e ny with arbitrary finite distribution (p1,p2, ..., Pm)

o wj; € [Gamma(c, §)]
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Theorem

¢#1<P(1 2, 17 1707U707070797070) =E |:ZNH1 e_kul e_eTull{M1<P}]
Mi—1 M-1-k ¢ a(k+m)
{Z #Fe ) 2B ( +§) Pla(k +m), (v +€)V)
Mi—1 ak
B —c(6+))
Z <v—|—§) P(ak,(v+ &V ,;)E nFi— n}e
L%JJ g
- =Tl L —c(6+) Py """PR
e A o (e ) Z Bl - 51?.!’
r= I8ll1=4
[R]-B=r+j
E L
L S o
— < P! - BR!
r=0 1Bll1=3

[R]-B=r+j
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Results and Simulation

We find @, ,(1,1,1,1,0,0,0,0,0,0,0,0) = E [11,, <] = P{u1 < p}

and compare to simulated results for a range of M; values

Constant Observalion with Parameters(1].25,.5,.25][1.5,1.5], 11,1000, 1000)

Pl | <min fru AUl

Constant Observalion with Parameters (1,].25, 5,.251(1.5,1.5], 1.61,100,50)

Fredited
Empirical [100)

Yo s ww w1
[

Ryan White

Predited
Ermpitcal (100)
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Simulation for an Alternate Model

We did the same under the assumptions A; € [Exponential ()],
n1 € [Geometric(a)], w11 € [Exponential(€)].

Exponertial Obs eruation with Parameters( 1, 5,1,2M1,1000,1000) Exponertial Observation with Paraim eters (4, 5,1,.5,M1,1000,300)

Predicted Predcted
09 Empirical (100) 08 Ernpirical (100]
X} 04
(X 01
= 18 = 0§
£ s £ 0s
£ £
¥ i
B X} o o4
E £
= S
X} 03
02 0.2
3] 0.1
Sor si0 ww 9w ®o w0 ges 90 g0 890 7000 Yoi e w0 wen w0 9w @0 @0 g0 860 7000
M1 M1
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Extensions and Future Work

w
v
-7 FOPT
FPT
v

M N
Figure: Continuous Auxiliary Model,
v; = min{n : W, > V;}

H
I M,
+

T

Figure: Dual Auxiliary Model,

p1 = max{py, v}
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Extensions and Future Work, Time-Sensitive Analysis

@ Time-sensitive models
o We try to “interpolate” the process in random vicinities of the FOPT.

w //

v

M N

o New strategies: generalization to IS| processes viewed upon stopping
times, additional operators, convolutions

o New types of results: P{N, = k,7, < t}, P{W, < ¥,7,1 <t < 7,}
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Extensions and Future Work - n-Dimensional Model

@ n-component model
e n-dimensional process

e Threshold(s) on each of n components (d stopping times for observed
crossings)

o New strategies: Additional operators, generalization of the confined
process strategy, new computational techniques

o New types of results: P{us < us < ua},
]P{,Ufl = K3, Tmin{p1,...,ptn } < t}
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