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Probability Space

(Ω,F ,P) is a probability space if

Ω is any set (the sample space)

F is a σ-algebra (a collection of subsets of Ω representing events)

P is a probability measure

P : F → [0, 1] assigns a probability to each event

In short, a probability space is just a measure space where P(Ω) = 1
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Random Variables

A real-valued RV is a measurable function X : (Ω,F)→ (R,B(R))

Technically, for each E ∈ B(R), X−1(E) = {X ∈ E} ∈ F

E.g., if E = [−∞, t], the CDF of X is

P{X ∈ E} = P{X ∈ [−∞, t]} = P(X ≤ t)
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Expectation

If X is P-integrable, X ∈ L1(P), its expectation is defined as

E[X] =

∫
Ω
X dP

This generalizes the possibly more familiar notions of expectation

E[X] =
∑
j∈Z

xjP{X = j} (for discrete RVs)

E[X] =

∫
R
xf(x) dx (for continuous RVs)
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Properties of RVs and Expectation

For g, h ∈ C−1
(
R,B(R)

)
(measurable functions), X and Y RVs

1 g ◦X is a RV

2 E[1A(ω)] =
∫
A dP = P{A}

3 X and Y independent =⇒ E[g(X)h(Y )] = E[g(X)]E[h(Y )]
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Conditional Expectation

The conditional expectation E[X|Y ] is the expectation of X given Y

1 E[E[g(X)|Y ]] = E[g(X)] (Double Expectation)

2 E[g(X)f(X,Y )|X] = g(X)E[f(X,Y )|X], a.s.
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Probability Transforms

The probability-generating function (PGF) of a discrete RV X is
g(z) = E[zX ], ‖z‖ ≤ 1

P{X = k} = g(k)(0)
k! (Distribution)

The Laplace-Stieltjes transform (LST) of a continuous nonnegative
RV X is L(θ) = E[e−θX ], Re(θ) ≥ 0

P{X ≤ t} = L−1
θ

{
L(θ)
θ

}
(t) (CDF)

E[Xk] = (−1)k lim
θ→0

L(k)(θ) (Moments)
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Papers

We follow the ideas of the papers

J. H. Dshalalow and R. White. On Reliability of Stochastic Networks.
Neural, Parallel, and Scientific Computations, 21 (2013) 141-160

J. H. Dshalalow and R. White. On Strategic Defense in Stochastic
Networks. Stochastic Analysis and Applications, accepted for
publication (2014)
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Random Walks on Random Lattices

(a) Random Walk (b) Random Lattice
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Stochastic Network Cumulative Loss Model

1 {t1, t2, ...} – point process of attack times

2 nk – iid number of nodes lost at tk with PGF g(z) = E [zn1 ].

3 wjk – iid weight per node with LST l(u) = E [e−uw11 ]

wk =
nk∑
j=1

wjk – total weight lost at tk
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The Cumulative Loss Process

We use a (multidimensional) compound Poisson random measure of rate
λ, i.e., for E ∈ B(R≥0),

η(E) =
∞∑
k=1

(nk, wk)εtk(E)

εtk is the Dirac (point mass) measure,

εtk(E) =

{
1 : tk ∈ E
0 : tk /∈ E

η([0, t]) is the cumulative losses of nodes and weight up to time t
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The Cumulative Loss Process (cont.)

η([0, t]) is a monotone increasing process on N× R+,
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Delayed Observation

The process is observed upon a delayed renewal process

T =
∞∑
n=0

ετn

∆k = τk − τk−1 are iid with LST L(θ), k ∈ N

τ0 = ∆0 is independent of ∆k, k ≥ 1

The process of interest is the embedded process

Z =
∞∑
n=0

η((τn−1, τn])ετn =
∞∑
n=0

(Xn, Yn)ετn

(Nn,Wn) = Z([0, τn]), the value of the process at τn
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Delayed Observation as an Embedded Process

We consider the (green) embedded process
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Observed Threshold Crossings

Each component has a threshold: M for nodes, V for weights

The first observed passage time (FOPT) is τρ, where

ρ = min{n : Nn > M or Wn > V }

Threshold crossing by the observed (embedded) process Z
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Observed Threshold Crossings (FPT vs FOPT)
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Joint Transform of Each Observation Epoch

γ (z, v, θ) = E
[
zX1e−vY1e−θ∆1

]
= · · ·

· · · = L [θ + λ− λg (zl (v))]

For ∆0, the result is γ0(z, v, θ) = L0[θ + λ− λg(zl(v))]
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Joint Transform of Each Observation Epoch

γ (z, v, θ) = E
[
zX1e−vY1e−θ∆1

]
= E

[
e−θ∆1E

[
zX1e−vY1

∣∣∆1

]]
(Double Expectation)

= E
[
e−θ∆1E

[
zn1e−v(w11+...+wn11) × · · · × znJ e−v(w1J+...+wnJJ)

∣∣∣∆1

]]
= E

[
e−θ∆1E

[
(g (zl (v)))

J ∣∣∆1

]]
(nk’s and wjk’s are iid)

= E
[
e−(θ+λ−λg(zl(v)))∆1

]
(J is Poisson with parameter λ∆1)

= L [θ + λ− λg (zl (v))]

For ∆0, the result is γ0(z, v, θ) = L0[θ + λ− λg(zl(v))]
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Functional of Interest

We seek a joint functional of the of the process upon τρ−1 and τρ,

Φ(α0, α, β0, β, h0, h) = E
[
α0

Nρ−1αNρe−β0Wρ−1−βWρe−h0τρ−1−hτρ
]
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Whi Φ?

Φ(α0, α, β0, β, h0, h) = E
[
α0

Nρ−1αNρe−β0Wρ−1−βWρe−h0τρ−1−hτρ
]

Φ leads to marginal PGFs/LSTs,

Φ(1, α, 0, 0, 0, 0) = E
[
αNρ

]
Φ(1, 1, β0, 0, 0, 0) = E

[
e−β0Wρ−1

]
Φ(1, 1, 0, 0, 0, h) = E

[
e−hτρ

]
which lead to moments and distributions of components of the process
upon τρ−1 and τρ
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Goal and Operational Calculus Strategy

The goal is to derive Φ in an analytically or numerically tractable form

Strategy to derive Φ,

Φ
H−→ Ψ

Assumptions−−−−−−−→ Ψ (convenient form)
H−1

−−−→ Φ (tractable)

for an operator H to be introduced next
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H Operator

We introduce an operator,

Hpq = LCq ◦Dp

where

LCq(g(q))(y) = yLq(g(q)) = y

∞∫
q=0

g(q)e−qy dq

Dp{f(p)}(x) = (1− x)

∞∑
p=0

xpf(p), ‖x‖ < 1

for a function g(q) and a sequence f(p).
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Inverse Operator

Dp has an inverse which can restore f ,

Dkx (·) = limx→0
1
k!

∂k

∂xk

(
1

1−x (·)
)
, k ∈ N

Dkx (Dp{f(p)}(x)) = f(k)

A key asset of the inverse:

Dkx

( ∞∑
j=0

ajx
j

)
=

k∑
j=0

aj

The inverse of the composition Hpq is

H−1
xy (Ψ(x, y)) (p, q) = L−1

y

(
1

y
Dpx (Ψ(x, y))

)
(q)
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Decomposition of Φ

Let µ = inf{n : Nn > M}, ν = inf{n : Wn > V }

Decompose Φ as

Φ = E
[
α0

Nρ−1αNρe−β0Wρ−1−βWρe−h0τρ−1−hτρ
]

= E
[
α
Nµ−1

0 αNµe−β0Wµ−1−βWµ−h0τµ−1−hτµ1{µ<ν}

]
+ E

[
α
Nµ−1

0 αNµe−β0Wµ−1−βWµ−h0τµ−1−hτµ1{µ=ν}

]
+ E

[
α
Nν−1

0 αNνe−β0Wν−1−βWν−h0τν−1−hτν1{µ>ν}

]
= Φµ<ν + Φµ=ν + Φµ>ν

We will derive Φµ<ν of the confined process on the trace σ-algebra
F ∩ {µ < ν}
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Decomposing Further, Applying Hpq

Introduce µ(p) = inf{j : Nj > p}, ν(q) = inf{k : Wk > q}

Φµ(p)<ν(q) =
∑
j≥0

∑
k>j

E
[
α
Nj−1

0 αNj e−β0Wj−1−βWj−h0τj−1−hτj1{µ(p)=j, ν(q)=k}

]

Next, apply Hpq to Φµ(p)<ν(q)

By Fubini’s Theorem, Hpq can be interchanged with the two series
and expectation (an integral w.r.t. P)
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Calculating Hpq

(
1{µ(p)=j,ν(q)=k}

)
(x, y)

Hpq
(
1{µ(p)=j,ν(q)=k}

)
(x, y)

= Hpq
(
1{Nj−1≤p}1{Nj>p}1{Wk−1≤q}1{Wk>q}

)
(x, y)

= y (1− x)

Nj−1∑
p=Nj−1

xp
∫ Wk

q=Wk−1

e−yqdq

=
(
xNj−1 − xNj

) (
e−yWk−1 − e−yWk

)
(Partial geometric series)
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Independent Increments in Hpq

(
Φµ(p)<ν(q)

)
(x, y)

Hpq
(
Φµ(p)<ν(q)

)
(x, y) =

∑
j≥0

∑
k>j

E
[
α
Nj−1

0 αNje−β0Wj−1−βWj−h0τj−1−hτj

×
(
xNj−1 − xNj

) (
e−yWk−1 − e−WBk

) ]
=
∑
j≥0

E
[
(α0αx)

Nj−1 e−(β0+β+y)Wj−1−(h0+h)τj−1

]
× E

[
αXj

(
1− xXj

)
e−(β+y)Yj−h∆j

]
×
∑
k>j

E
[
e−y(Yj+1+...+Yk−1)

]
E
[
1− e−yYk

]
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Simplifying Hpq

(
Φµ(p)<ν(q)

)
(x, y)

Denote

γ = γ (α0αx, β0 + β + y, h0 + h)

Γ = γ (αx, β + y, h)

Γ 1 = γ (α, β + y, h)

Then we can simplify the expectations as

E
[
(α0αx)Nj−1 e−(β0+β+y)Wj−1−(h0+h)τj−1

]
=

{
1, j = 0

γ0γ
j−1, j > 0

E
[
αXj

(
1− xXj

)
e−(β+y)Yj−h∆j

]
=

{
Γ 1

0 − Γ0, j = 0
Γ 1 − Γ, j > 0

E
[
e−y(Yj+1+...+Yk−1)

]
= γk−1−j (1, y, 0) , k > j ≥ 0

E
[
1− e−yYk

]
= 1− γ (1, y, 0) , k > j ≥ 0

Ryan White Operational Calculus in RWRL 2014 28 / 48



Deriving Φµ<ν

Implementing the notation, we see the j and k series become

Γ 1
0 − Γ0 + (Γ 1 − Γ )γ0

∑
j≥1

γj−1 = Γ 1
0 − Γ0 + γ0

Γ 1 − Γ
1− γ

(1− γ(1, y, 0))
∑
k>j

γk−1−j(1, y, 0) = 1

Ryan White Operational Calculus in RWRL 2014 29 / 48



Bounding L(ϑ)

Let ϑ ∈ C and H = {∆ ∈ [0, 1]} ∈ F , then

‖L(ϑ)‖ =

∥∥∥∥∫
Ω
e−ϑ∆1 dP

∥∥∥∥ (1)

≤
∫

Ω
‖e−ϑ∆1‖ dP (2)

≤
∫

Ω
e−Re(ϑ)∆1 dP (3)

≤
∫
H
e−Re(ϑ)∆1 dP +

∫
HC

e−Re(ϑ)∆1 dP (4)

≤
∫
H
dP + e−Re(ϑ)

∫
HC

dP (5)

≤ P{∆1 ≤ 1}+ e−Re(ϑ)(1− P{∆1 ≤ 1}) < 1⇔ Re(ϑ) > 0
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Bounding L(θ + λ− λg(zl(v))

Assume Re(θ) ≥ 0, 1 ≥ ‖z‖, and Re(v) ≥ 0.

Clearly, Re(θ + λ− λg(zl(v)) > 0 if Re(θ) > 0 or Re(g(zl(v))) < 1.

Theorem (Schwarz Lemma)

Let g (z) be an analytic function in the unit ball B(0, 1) with ‖g (z)‖ ≤ 1
and g (0) = 0. Then ‖g (z)‖ ≤ ‖z‖ in B(0, 1)

Re(g(zl(v))) ≤ ‖g(zl(v))‖ ≤ ‖zl(v)‖ ≤ ‖z‖‖l(v)‖ < 1 if

‖z‖ < 1 or Re(v) > 0.
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Result for Φ

Solving for Φµ=ν and Φµ>ν analogously and adding to Φµ<ν ,

Φ = H−1
xy

(
ζ1

0 − Γ0 +
γ0

1− γ
(
ζ1 − Γ

))
(M,V )

where

γ = γ (α0αx, β0 + β + y, h0 + h)

Γ = γ (αx, β + y, h)

ζ1 = γ(αx, β, h)
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Results for a Special Case

To demonstrate that tractable results can be derived from this, we will
consider a special case where

∆k ∈ [Exponential(µ)] =⇒ L(θ) = µ
µ+θ

nk ∈ [Geometric(a)] =⇒ g(z) = az
1−bz , (b = 1− a)

wjk ∈ [Exponential(ξ)] =⇒ l(u) = ξ
ξ+u

(N0,W0) = (0, 0)

Recall γ (z, v, θ) = L [θ + λ− λg (zl (v))]
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Theorem 1

Φ = Φ (1, z, 0, v, 0, θ) = E
[
zNρe−vWρe−θτρ

]
= 1−

(
1− µ

µ+ θ + λ

v + ξ(1− bz)
v + ξ(1− c2z)

)
×
(

1 +
bµ

λ+ bθ
+

aλµ

(λ+ bθ) (λ+ θ)
φ (z, v, θ)

)
,

φ(z, v, θ) =
v + ξ

v + ξ(1− c1z)
−
c1zξ Q(M − 1, c1zξV ) e−(v+ξ(1−c1z))V

v + ξ(1− c1z)

−
(c1zξ)

M P (M − 1, (ξ + v)V )

(v + ξ(1− c1z))(ξ + v)M−1
,

c1 =
λ+ bθ

λ+ θ
, c2 =

λ+ b(µ+ θ)

λ+ µ+ θ
,

and Q(x, y) = Γ(x,y)
Γ(x) is the lower regularized gamma function.
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Corollaries: Marginal Transforms

Φ(1, z, 0, 0, 0, 0) = E
[
zNρ
]

=
zQ(M − 1, zξV )e−ξ(1−z)V + zMP (M − 1, ξV )

µ+ λ− (λ+ bµ)z

Φ(1, 1, 0, v, 0, 0) = E
[
e−vWρ

]
=
λv + bµv + aξµφ(1, v, 0)

aξµ+ (λ+ µ)v

Φ(1, 1, 0, 0, 0, θ) = E
[
e−θτρ

]
= 1− θ

µ+ θ

[
1 +

bµ

λ+ bθ
+

aλµφ(1, 0, θ)

(λ+ bθ)(λ+ θ)

]
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Useful Results: CDF of Observed Passage Time, τρ

Fτρ(ϑ) = P{τρ < ϑ}

= λP (M − 1, ξV )

M−1∑
j=0

cjφj(ϑ) + λe−ξλ
M−2∑
k=0

(ξV )k

k!

k∑
j=0

djφj(ϑ)

where

cj =

(
M − 1

j

)
(aλ)jbM−1−j

dj =

(
k

j

)
(aλ)jbk−j

φj(ϑ) =
1

λj+1
P (j + 1, λϑ)− e−µϑ

(λ− µ)j+1
P (j + 1, (λ− µ)ϑ)
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Useful Results: Means at τρ

E [Nρ] = λ+bµ
aµ +M − (M − 1)Q(M − 1, ξV ) + ξV Q(M − 2, ξV )

E [Wρ] =
E[Nρ]
ξ = E [Nρ]E[w11]
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Simulation

We simulated 1,000 realizations of the process under each of the some sets
of parameters (λ, µ, a, ξ,M, V ) and recorded the sample means:

Parameters E [Nρ] S. Mean Error E [Wρ] S. Mean Error

(1) 989.08 988.82 0.26 989.08 990.06 0.98

(2) 990.63 990.39 0.24 990.63 990.27 0.36

(3) 989.28 989.92 0.64 989.28 988.97 0.31

(4) 989.08 989.08 0.00 989.08 989.68 0.31

(5) 503.00 502.73 0.27 1006.00 1005.04 0.96

(6) 1002.00 1001.57 0.43 501.00 500.91 0.09

(7) 803.00 802.68 0.32 803.00 802.67 0.33

(8) 752.00 752.10 0.10 752.00 751.68 0.32

(9) 493.57 493.46 0.11 987.14 986.59 0.55
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Auxiliary Threshold Model

We introduce another threshold M1 < M with µ1 = min{n : Nn > M1}
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Auxiliary Threshold Model

We will be concerned with the confined process where µ1 < ρ,
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Functional of Interest

Our functional of interest will be similar to before, but containing terms
associated with the auxiliary crossing at µ1

Φµ1<ρ = Φµ1<ρ (z0, z, α0, α, v0, v, β0, β, θ0, θ, h0, h)

= E
[
z
Nµ1−1

0 zNµ1 α
Nρ−1

0 αNρ e−v0Wµ1−1−vWµ1 e−β0Wρ−1−βWρ

× e−θ0τµ1−1−θτµ1 e−h0τρ−1−hτρ 1{µ1<ρ}

]
A new capability is to find

Φµ1>ρ (1, 1, 1, 1, 0, 0, 0, 0, 0,−h, 0, h) = E
[
e−h(τρ−τµ1)

]
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Strategy and Model 1: Constant Observation

We use an operator Hµ1 = LCs ◦Dq ◦Dp adaped to work with the
additional discrete threshold, but the path to results remains the same

Φµ1<ρ
Hµ1−−→ Ψµ1<ρ

Assumptions−−−−−−−→ Ψµ1<ρ (convenient)
H−1
µ1−−−→ Φµ1<ρ (tractable)

In this model, we have

∆k = c a.s.

nk with arbitrary finite distribution (p1, p2, ..., pm)

wjk ∈ [Gamma(α, ξ)]
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Theorem

Φµ1<ρ(1, z, 1, 1, 0, v, 0, 0, 0, θ, 0, 0) = E
[
zNµ1e−vWµ1e−θτµ11{µ1<ρ}

]
=

{
M1−1∑
k=0

zkFk

M−1−k∑
m=0

zmEm

(
ξ

v + ξ

)α(k+m)

P (α(k +m), (v + ξ)V )

−
M1−1∑
k=0

zk
(

ξ

v + ξ

)αk
P (αk, (v + ξ)V )

k∑
n=0

EnFk−n

}
e−c(θ+λ)

Fj =

bR−1
R

jc∑
r=0

(cλ)j−r Li−(j−r)

(
e−c(θ+λ)

) ∑
‖β‖1=j

[R]·β=r+j

pβ11 · · · p
βR
R

β1! · · · βR!
,

Ej =

bR−1
R

jc∑
r=0

(cλ)j−r
∑
‖β‖1=j

[R]·β=r+j

pβ11 · · · p
βR
R

β1! · · · βR!
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Results and Simulation

We find Φµ1<ρ(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) = E
[
1{µ1<ρ}

]
= P{µ1 < ρ}

and compare to simulated results for a range of M1 values
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Simulation for an Alternate Model

We did the same under the assumptions ∆1 ∈ [Exponential(µ)],
n1 ∈ [Geometric(a)], w11 ∈ [Exponential(ξ)].
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Extensions and Future Work

Figure: Continuous Auxiliary Model,
ν1 = min{n : Wn > V1}

Figure: Dual Auxiliary Model,
ρ1 = max{µ1, ν1}
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Extensions and Future Work, Time-Sensitive Analysis

Time-sensitive models

We try to “interpolate” the process in random vicinities of the FOPT.

New strategies: generalization to ISI processes viewed upon stopping
times, additional operators, convolutions

New types of results: P{Nρ = k, τρ < t}, P{Wρ < ϑ, τρ−1 < t < τρ}

Ryan White Operational Calculus in RWRL 2014 47 / 48



Extensions and Future Work - n-Dimensional Model

n-component model

n-dimensional process

Threshold(s) on each of n components (d stopping times for observed
crossings)

New strategies: Additional operators, generalization of the confined
process strategy, new computational techniques

New types of results: P{µ3 < µ5 < µ2},
P{µ1 = µ3, τmin{µ1,...,µn} < t}
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