§16.5 Curl and Divergence

— Disclaimer: This is NOT a complete list of what you need to understand,
additional material in the text may appear on tests.

— Curl and divergence are operations performed on vector fields, both re-
sembling differentiation in some sense.

— The curl operation yields a vector field indicating the tendency of particles
to rotate about the axis pointing in the direction of curl F(z,y, z) at each
point (x,y, 2).
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— If F = Pi+Qj+ Rk is a vector field in R? where the first partial derivatives
of P, @, and R exist, then
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o If F is defined on all of R? and its component functions have contin-
uous partial derivatives, F is conservative if and only if curl F = 0.

— The divergence operation yields a scalar field measuring the tendency of
particles to move away from each point (z,y, 2).

— If F = Pi+Qj-+ Rk is a vector field in R? where the first partial derivatives
of P, @, and R exist, then
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— Curl and divergence lead to another form of Green’s Theorem.
e Let C = r(t) be a curve enclosing D satisfying the conditions of
Green’s Theorem.

e Recall n(t) = % is the unit normal vector of a curve C, then
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The left side is read as “the line integral of the normal component of
F along C.”



816.6 Parametric Surfaces and Their Areas

— For (u,v) € D for some domain D, a parametric surface is defined by a
vector function of two variables,

r(u,v) = z(u,v)i+ y(u,v)j + z(u,v)k (1)

— Parametric surfaces allow us to define a very general class of surfaces, as
opposed to only the very specific surfaces we have seen in the past like
spheres and cylinders.

— If a smooth parametric surface S is given by equation (1) for (u,v) € D
and S is covered just once as (u,v) ranges through D, then the surface

area of S is
A(S) = // [ry X ry|dA
D

Problems

Example 1 (§16.5 #15): Is F(z,y, 2) = 2zyi+ (22 +2yz)j+y?k conservative?
If so, find a function f such that F =V f.

Solution. Since the P, @), and R terms are all polynomials, they have contin-
uous partial derivatives, so if curl F = 0, then F is conservative.

curl F=(2y —2y)i— (0—-0)j+ 2z —22)k =0

Therefore, F is conservative. Next, we need to find f such that F = Vf =
fzi+ fyj + f-k. Suppose f, = P = 2xy, then if we integrate with respect to x,
we find

[y, 2) = 2%y + g(y, 2) (2)

The constant of integration here is a function of y and z. Differentiating with
respect to y, we find f, = 2% + g,(y, 2), but we should have @ = f,, then we
must have g, (y, z) = 2yz.

Finally, we need to make sure R = f,. Integrating f, with respect to y, we find

flz,y,z) = /x2 +2yzdy = 2y + Yz + h(z) (3)

The constant of integration depends on z, then differentiating this latest f with
respect to z, we find f, = y? + h/(z), then h/(z) = 0, so h(z) = C for some
constant C.



Thus, we have f(x,y,2) = 2%y +y*2 + C.
Example 2 (§16.6 #23): Find the parametric representation of the part of
the sphere z2 + y? + 22 = 4 that lies above the cone z = y/22 + %2. Then find

its surface area.

Solution. We are considering the surface the part of the sphere above the cone:

The cone and sphere intersect along a circle, and we will want to bound x and
y within the projection of this circle on the zy-plane. Let’s set the equations
equal to one another to find projection of the intersection:

22 =22

2?2 +y? =4 —2% —y* (use the cone on the left and sphere on the right)
22 +9y%) =4
2?4y =2 (a circle of radius v/2 centered at the origin)

The z-coordinate of the intersection will simply be z = /22 + y2 = /2.

If we restrict = and y to within the circle and use the parametrization x = u
and y = v, we next get the z-coordinate of the sphere using its equation: z =

V4 —u? — 02 for u? 4+ 0% < 2.



To find the surface area, we can plug in our parametrization to find r(u,v) = ui+

vj+v4 — u? — v2k, then we have r, = i—\/ﬁk andr, =j—

Then we can use the formula for surface area:

A(S) = //\ru X 1| dA
D

First, we need the cross product:
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Then we need the magnitude of this vector, which is
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Plugging this back into the integral, we have
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