
§16.5 Curl and Divergence

− Disclaimer: This is NOT a complete list of what you need to understand,
additional material in the text may appear on tests.

− Curl and divergence are operations performed on vector fields, both re-
sembling differentiation in some sense.

− The curl operation yields a vector field indicating the tendency of particles
to rotate about the axis pointing in the direction of curl F(x, y, z) at each
point (x, y, z).

− Let ∇ =
〈
∂
∂x ,

∂
∂y ,

∂
∂z

〉
− If F = P i+Qj+Rk is a vector field in R3 where the first partial derivatives

of P , Q, and R exist, then

curl F = ∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣
=

(
∂R

∂y
− ∂Q

∂z

)
i−
(
∂R

∂x
− ∂P

∂z

)
j +

(
∂Q

∂x
− ∂P

∂y

)
k

• If F is defined on all of R3 and its component functions have contin-
uous partial derivatives, F is conservative if and only if curl F = 0.

− The divergence operation yields a scalar field measuring the tendency of
particles to move away from each point (x, y, z).

− If F = P i+Qj+Rk is a vector field in R3 where the first partial derivatives
of P , Q, and R exist, then

div F = ∇ · F =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

− Curl and divergence lead to another form of Green’s Theorem.

• Let C = r(t) be a curve enclosing D satisfying the conditions of
Green’s Theorem.

• Recall n(t) = r′(t)
|r′(t)| is the unit normal vector of a curve C, then∮

C

F · n ds =

∫∫
D

div F(x, y) dA

The left side is read as “the line integral of the normal component of
F along C.”
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§16.6 Parametric Surfaces and Their Areas

− For (u, v) ∈ D for some domain D, a parametric surface is defined by a
vector function of two variables,

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k (1)

− Parametric surfaces allow us to define a very general class of surfaces, as
opposed to only the very specific surfaces we have seen in the past like
spheres and cylinders.

− If a smooth parametric surface S is given by equation (1) for (u, v) ∈ D
and S is covered just once as (u, v) ranges through D, then the surface
area of S is

A(S) =

∫∫
D

|ru × rv| dA

Problems

Example 1 (§16.5 #15): Is F(x, y, z) = 2xyi+(x2+2yz)j+y2k conservative?
If so, find a function f such that F = ∇f .

Solution. Since the P , Q, and R terms are all polynomials, they have contin-
uous partial derivatives, so if curl F = 0, then F is conservative.

curl F = (2y − 2y)i− (0− 0)j + (2x− 2x)k = 0

Therefore, F is conservative. Next, we need to find f such that F = ∇f =
fxi + fyj + fzk. Suppose fx = P = 2xy, then if we integrate with respect to x,
we find

f(x, y, z) = x2y + g(y, z) (2)

The constant of integration here is a function of y and z. Differentiating with
respect to y, we find fy = x2 + gy(y, z), but we should have Q = fy, then we
must have gy(y, z) = 2yz.

Finally, we need to make sure R = fz. Integrating fy with respect to y, we find

f(x, y, z) =

∫
x2 + 2yz dy = x2y + y2z + h(z) (3)

The constant of integration depends on z, then differentiating this latest f with
respect to z, we find fz = y2 + h′(z), then h′(z) = 0, so h(z) = C for some
constant C.
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Thus, we have f(x, y, z) = x2y + y2z + C.

Example 2 (§16.6 #23): Find the parametric representation of the part of

the sphere x2 + y2 + z2 = 4 that lies above the cone z =
√
x2 + y2. Then find

its surface area.

Solution. We are considering the surface the part of the sphere above the cone:

The cone and sphere intersect along a circle, and we will want to bound x and
y within the projection of this circle on the xy-plane. Let’s set the equations
equal to one another to find projection of the intersection:

z2 = z2

x2 + y2 = 4− x2 − y2 (use the cone on the left and sphere on the right)

2(x2 + y2) = 4

x2 + y2 = 2 (a circle of radius
√

2 centered at the origin)

The z-coordinate of the intersection will simply be z =
√
x2 + y2 =

√
2.

If we restrict x and y to within the circle and use the parametrization x = u
and y = v, we next get the z-coordinate of the sphere using its equation: z =√

4− u2 − v2 for u2 + v2 ≤ 2.
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To find the surface area, we can plug in our parametrization to find r(u, v) = ui+
vj+
√

4− u2 − v2k, then we have ru = i− u√
4−u2−v2k and rv = j− v√

4−u2−v2k.

Then we can use the formula for surface area:

A(S) =

∫∫
D

|ru × rv| dA

First, we need the cross product:

ru × rv =

∣∣∣∣∣∣
i j k
1 0 − u√

4−u2−v2
0 1 − v√

4−u2−v2

∣∣∣∣∣∣
=

u√
4− u2 − v2

i +
v√

4− u2 − v2
j + k

Then we need the magnitude of this vector, which is

|ru × rv| =
√

u2

4− u2 − v2
+

v2

4− u2 − v2
+ 1

=

√
u2 + v2 + 4− u2 − v2

4− u2 − v2

=

√
4

4− u2 − v2
= 2

√
1

4− u2 − v2

Plugging this back into the integral, we have

A(S) = 2

∫∫
D

√
1

4− u2 − v2
dA

= 2

∫ 2π

0

∫ √2

0

r√
4− r2

dr dθ (using polar coordinates)

= 4π

∫ √2

0

r√
4− r2

dr (the integrand is independent of θ)

= −2π

∫ 2

4

1√
w
dw (substitution w = 4− r2, dw = −2r dr)

= 2π

∫ 4

2

w−1/2 dw (switch the order of the bounds)

= 2π
[
2w1/2

]4
2

= 4
(
2−
√
2
)
π ≈ 2.434π
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νp(1) = ... = νp(s1) < νp(s1+1) = ... = νp(s2) < ... < νp(sk−1+1) = ... = νp(d)
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