
1 Highlights (§15.7)

− Disclaimer: This is NOT a complete list of what you need to understand.
Any material in the sections may appear on tests.

− Triple integrals are the extension of integrals to functions of 3 variables.
Most ideas apply analogously in evaluating them, but now we integrate
over 3-dimensional regions, which can be more difficult to set up.

− The ideas may be less intuitive in a physical sense. Triple integrals yield
”hyper-volume,” which is the generalization of volume to 4 dimensions,
which is not something we can visualize effectively.

− Integrals in 3 (or more) dimensions are still very useful, and a few appli-
cations are shown in pages 1047-1048 of Stewart.

− We again have some classes of regions of integration. For some 3D region
E, if D is the projection of E onto one of the 2D coordinate planes, then
the types are

• Type I region: E = {(x, y, z) | (x, y) ∈ D,u1(x, y) ≤ z ≤ u2(x, y)}

◦
∫∫∫
E

f(x, y, z) dV =
∫∫
D

[∫ u2(x,y)

u1(x,y)
f(x, y, z) dz

]
dA

• Type II region: E = {(x, y, z) | (y, z) ∈ D,u1(y, z) ≤ x ≤ u2(y, z)}

◦
∫∫∫
E

f(x, y, z) dV =
∫∫
D

[∫ u2(y,z)

u1(y,z)
f(x, y, z) dx

]
dA

• Type III region: E = {(x, y, z) | (x, z) ∈ D,u1(x, z) ≤ y ≤ u2(x, z)}

◦
∫∫∫
E

f(x, y, z) dV =
∫∫
D

[∫ u2(x,z)

u1(x,z)
f(x, y, z) dy

]
dA

− Note that after we do the innermost integral, we still have a double inte-
gral, so we will need to figure out the bounds on D as in previous sections.

• Given the full information on D, we can write E more specifically
and the integral more clearly.

• If E = {(x, y, z) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), u1(x, y) ≤ z ≤ u2(x, y)},
then

◦
∫∫∫
E

f(x, y, z) dV =
∫ b
a

∫ g2(x)
g1(x)

∫ u2(x,y)

u1(x,y)
f(x, y, z) dz dy dx

• This is just one example, any ordering of the integrals is possible for
different types of regions - #’s 29, 31, 33, 35 are good practice.
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2 Problems

Example 1 (#13): Evaluate
∫∫∫

E
6xy dV where E lies under the plane z =

1 + x+ y and above the region in the xy-plane bounded by the curves y =
√
x,

y = 0, and x = 1.

Solution. Since z is between the xy-plane and 1+x+y, we have 0 ≤ z ≤ 1+x+y.
We also have 0 ≤ y ≤

√
x and 0 ≤ x ≤ 1. Our region then looks like this:

We can set up the integral as
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∫∫∫
E

6xy dV =

∫ 1

0

∫ √x
0

∫ 1+x+y

0

6xy dz dy dx

= 6

∫ 1

0

x

∫ √x
0

y [z]
1+x+y
0 dy dx

= 6

∫ 1

0

x

∫ √x
0

y(1 + x+ y) dy dx

= 6

∫ 1

0

x

∫ √x
0

y(1 + x) + y2 dy dx

= 6

∫ 1

0

x

[
(1 + x)

y2

2
+
y3

3

]√x
0

dx

= 6

∫ 1

0

x

[
(1 + x)

x

2
+
x3/2

3

]
dx

= 6

∫ 1

0

x2

2
+
x3

2
+
x5/2

3
dx

= 6

[
x3

6
+
x4

8
+

2x7/2

21

]1
0

= 6

(
1

6
+

1

8
+

2

21

)
=

65

28

Note that we didn’t pull out the x like line 2 in class, but assuming we didn’t
make arithmetic or algebraic errors somewhere, the solution should be the same.

Example 2 Use a triple integral to find the volume of the solid enclosed by the
cylinder x2 + y2 = 9 and the planes z = 1 and y + z = 5.

Solution. Our solid is a vertical cylinder between a horizontal plane on the
bottom and an angled plane at the top:
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The lower plane is at 1, and the upper plane is y + z = 5, then we can see
1 ≤ z ≤ 5− y, and solving for y in the equation of the cylinder, x2 + y2 = 9, we
find −

√
9− x2 ≤ y ≤

√
9− x2. Finally, since the radius of the cylinder is 3 and

it’s centered at (0, 0) in the xy-plane, we see −3 ≤ x ≤ 3, so we can set up the
integral:

∫∫∫
E

dV =

∫ 3

−3

∫ √9−x2

−
√
9−x2

∫ 5−y

1

dz dy dx =

∫ −3
−3

∫ √9−x2

−
√
9−x2

5− y − 1 dy dx

=

∫ 3

−3

∫ √9−x2

−
√
9−x2

4− y dy dx =

∫ 3

−3

[
4y − y2

2

]√9−x2

−
√
9−x2

dx

=

∫ 3

−3
8
√

9− x2 − 9− x2 − 9 + x2

2
dx

= 8

∫ 3

−3

√
9− x2 dx = 4

[
x
√

9− x2 +
9

2
sin−1

x

3

]3
−3

= 36
[
sin−1(1)− sin−1(−1)

]
= 18

[π
2

+
π

2

]
= 36π

Example 3 (#17): Evaluate
∫∫∫
E

x dV , where E is bounded by paraboloid
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x = 4y2 + 4z2 and the plane x = 4.

Solution. As we can see, x must be nonnegative given the equation of the
paraboloid, and will be equal to 0 at the apex of the paraboloid, then we can
see 4y2 + 4z2 ≤ x ≤ 4.

Next, let D be the projection of E onto the yz-plane by considering its widest
part (at x = 4), so the projection will be 4y2 + 4z2 ≤ 4, or y2 + z2 ≤ 1 (i.e. a
circle!). Using polar coordinates in the yz-plane, we can define y = r cos θ and
z = r sin θ, where we will bound r by 1 (the radius is 1) and every angle should
be considered, 0 ≤ θ ≤ 2π. Then we have
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∫∫∫
E

x dV =

∫∫
D

∫ 4

4y2+4z2
x dx dA =

∫∫
D

[
x2

2

]4
4y2+4z2

dA

=

∫∫
D

1

2

(
16− 16(y2 + z2))2

)
dA

= 8

∫ 2π

0

∫ 1

0

(1− r4)r dr dθ = 8

∫ 2π

0

dθ

∫ 1

0

r − r5 dr

= 16π

[
r2

2
− r6

6

]1
0

= 16π

[
1

2
− 1

6

]
=

16π

3

Example 4: Find the mass the cube given by 0 ≤ x ≤ a, 0 ≤ y ≤ a, and
0 ≤ z ≤ a with the density function ρ(x, y, z) = x2 + y2 + z2

Solution. Since the region is a cube, the integral is simple to set up.

m =

∫ a

0

∫ a

0

∫ a

0

x2 + y2 + z2 dx dy dz =

∫ a

0

∫ a

0

[
x3

3
+ (y2 + z2)x

]a
0

dy dz

=

∫ a

0

∫ a

0

a3

3
+ ay2 + az2 dy dz =

∫ a

0

[
a3

3
y +

ay3

3
+ az2y

]a
0

dz

=

∫ a

0

a4

3
+
a4

3
+ a2z2 dz =

[
2a4

3
z +

a2z3

3

]a
0

=
2a5

3
+
a5

3
= a5
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