
1 Highlights (§14.6-14.7)

− Disclaimer: This is NOT a complete list of what you need to understand.
Any material in the sections may appear on tests.

− The gradient vector is a vector function ∇f = 〈fx, fy, fz〉 (it is defined
analogously for functions of 2 variables).

− In §14.6, we extend these ideas of partial derivatives to directional deriva-
tives, which represent the rate of change of the function in the direction
of a unit vector u = 〈a, b, c〉,

Duf(x, y, z) = u · ∇f(x, y, z) = u · 〈fx(x, y, z), fy(x, y, z), fz(x, y, z)〉 (1)

− The maximum directional derivative Duf(x, y, z) occurs when u has the
same direction as ∇f(x, y, z) and has maximum value |∇f(x, y, z)| (The-
orem 15).

− Any point (a, b) with fx(a, b) = fy(a, b) = 0 is called a critical point.

− The Second Derivatives Test allows us to classify many critical points as
local minimums, maximums, or saddle points.

− If f is continuous on a closed, bounded set D in R2, then f attains a
minimum and maximum value on D.

− To find the absolute minimum or maximum of f on D,

1. Find the values of f at all critical points of f in D.

2. Find the maximum and minimum values of f on the boundary of D.

3. The absolute minimum (maximum) occurs where f is smallest (largest)
at the critical points or along the boundary.

2 Problems

Example 1 (§14.2, #18): Evaluate lim
(x,y)→(0,0)

xy4

x2+y8 or show it does not exist.

First, we calculate limits along curves and see if we can show the limit does not
exist. If we cannot do this, we should pursue the squeeze theorem to prove the
limit exists.

A good curve will often cancel the variables in the numerator and leave a nonzero
number in the denominator after the limit. Next, we should notice that taking
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x to be some multiple of y4 will allow us to cancel the y’s, so:

lim
(my4,y)→(0,0)

my4y4

m2y8 + y8
= lim

(my4,y)→(0,0)

my8

(m2 + 1)y8

= lim
(my4,y)→(0,0)

m

m2 + 1
=

m

m2 + 1

Since we could take any multiple m, we see that the limit along x = y4 is 1
2 ,

while the limit along x = 2y4 is 2
5 , so the limits along these two curves are

different, so the limit lim
(x,y)→(0,0)

xy4

x2+y8 does not exist.

Example 2 (§14.6, #25): Find the maximum rate of change of f(x, y, z) =√
x2 + y2 + z2 at the point (3, 6,−2) and the direction in which it occurs.

Theorem 15 tells us that the maximum rate of change is |∇f(3, 6,−2)| and in
the direction of ∇f(3, 6,−2), so first, we calculate the partial derivatives at
(3, 6,−2),

fx(3, 6,−2) =
2x

2
√
x2 + y2 + z2

∣∣∣∣∣
(3,6,−2)

=
x√

x2 + y2 + z2

∣∣∣∣∣
(3,6,−2)

=
3

7

fy(3, 6,−2) =
y√

x2 + y2 + z2

∣∣∣∣∣
(3,6,−2)

=
6

7

fz(3, 6,−2) =
z√

x2 + y2 + z2

∣∣∣∣∣
(3,6,−2)

= −2

7

Then the maximum rate of change occurs in the direction ∇f(3, 6,−2) =〈
3
7 ,

6
7 ,−

2
7

〉
, and its value is |∇f(3, 6,−2)| =

√
9
49 + 36

49 + 4
49 = 1. (Note that

any multiple of ∇f(3, 6,−2) would also give a valid direction.)

Example 3 (§14.6, #45): Find the equations of the tangent plane and normal
line to the surface x + y + z = exyz at (0, 0, 1).

§14.6 provides a strategy aside from implicit differentiation to find tangent
planes when we cannot easily write the equation in the form z = f(x, y). For
F (x, y, z) = k for some constant k, the tangent plane can be written

Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0 (2)

First we set up F (x, y, z) = exyz−x−y−z = 0 and find the partial derivatives.

Fx(x, y, z) = yzexyz − 1

Fy(x, y, z) = xzexyz − 1

Fz(x, y, z) = xyexyz − 1
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Plugging in (x0, y0, z0) = (0, 0, 1) and using formula (2),

Fx(0, 0, 1)x + Fy(0, 0, 1)y + Fz(0, 0, 1)(z − 1) = 0

−x− y − (z − 1) = 0

The normal line is orthogonal to the tangent plane and passes through (0, 0, 1),
so the symmetric equations of the normal line are

x

Fx(0, 0, 1)
=

y

Fy(0, 0, 1)
=

z − 1

Fz(0, 0, 1)

−x = −y = −z + 1

Example 4 (§14.6, #46): Find the equations of the tangent plane and normal
line to the surface x4 + y4 + z4 = 3x2y2z2 at (1, 1, 1).

First, we set up F (x, y, z) = x4+y4+z4−3x2y2z2 = 0, and find the derivatives:

Fx(x, y, z) = 4x3 − 6xy2z2

Fy(x, y, z) = 4y3 − 6x2yz2

Fz(x, y, z) = 4z3 − 6x2y2z

Plugging in (x0, y0, z0), and using formula (2), we find the tangent plane:

Fx(1, 1, 1)(x− 1) + Fy(1, 1, 1)(y − 1) + Fz(1, 1, 1)(z − 1) = 0

−2(x− 1)− 2(y − 1)− 2(z − 1) = 0

The normal line is orthogonal to the tangent plane and passes through (1, 1, 1),
so the symmetric equations of the normal line are

x− x0

Fx(x0, y0, z0)
=

y − y0
Fy(x0, y0, z0)

=
z − z0

Fz(x0, y0, z0)

−x− 1

2
= −y − 1

2
= −z − 1

2

Example 5 (§14,7, #11): Find the local maximum and minimum values and
saddle point(s) of the function f(x, y) = x3 − 12xy + 8y3.

The critical points are points (a, b) such that fx(a, b) = fy(a, b) = 0, which we
need to find, so we will calculate the partial derivatives and set them equal to
0, and solve.

fx(x, y) = 3x2 − 12y = 0

fy(x, y) = −12x + 24y2 = 0
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Solving the first equation gives y = x2

4 , plugging this into the second equation,
we find

fy

(
x,

x2

4

)
= −12x + 24

x4

16
= 0

x− 2
x4

16
= 0

x

(
1− x3

8

)
= 0

Solving this yields x = 0 and x = 2, then we can find the y values for each

since y = x2

4 , so the critical points are (0, 0) and (2, 1). Next, we use the Second
Derivative Test to classify these critical points.

fxx(x, y) = 6x

fyy(x, y) = 48y

fxy(x, y) = −12

Then we have

D(0, 0) = (0)(0)− 144 < 0

D(2, 1) = (12)(48)− 144 = 432 > 0

fxx(2, 1) = 12 > 0

Thus, (0, 0) is a saddle point and (2, 1) is a local minimum with value f(2, 1) =
−8.

Example 6 (§14.7, #30): Find the absolute maximum and minimum of
f(x, y) = x + y − xy on the closed triangular region enclosed by (0, 0), (0, 2),
and (4, 0).

First, we will seek the local minimum and maximum points by solving for x
and y such that fx(x, y) = fy(x, y) = 0. Clearly, if fx(x, y) = 1 − y and
fy(x, y) = 1− x, then both are 0 only at x = y = 1, with f(1, 1) = 1.

Next, we will seek the maximum and minimum of the function along the bound-
ary of the triangle. First, we have the line segment (0, y) for 0 ≤ y ≤ 2, where
we have f(0, y) = y, which is maximized at 2 for y = 2 and minimized at 0 for
y = 0.

Second, we have the line segment (x, 0) for 0 ≤ x ≤ 4, along which f(x, 0) = x,
which is maximized at 4 for x = 4 (the highest so far) and minimized at 0 for
x = 0.
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Lastly, we have the third side of the triangle, y = −x
2 + 2, where we have

g(x) = f

(
x,
−x
2

+ 2

)
= x− x

2
+ 2 +

x2

2
− 2x =

x2

2
− 3x

2
+ 2

We maximize this function of 1 variable where 0 ≤ x ≤ 2 by finding where the
derivative is zero and compare to the endpoints:

g′(x) = x− 3

2
= 0

x =
3

2

Then, at this point we have f
(
3
2 ,

5
4

)
= 3

2 + 5
4 −

15
8 = 7

8 , so the maximum on the
third side of the triangle is f(4, 0) = 4. Thus, the absolute maximum occurs at
(4, 0) and the absolute minimum occurs at (0, 0).

Example 7 (§14.7, #35): Find the absolute minimum and absolute maximum
of f(x, y) = 2x3 + y4 on the domain D = {(x, y)|x2 + y2 ≤ 1}

When we’re given a domain, we know the absolute minimum and maximum will
occur either at critical points or along the boundary of the domain. First, we
should find the critical point(s):

fx(x, y) = 6x2

fy(x, y) = 4y3

These are both zero only at (0, 0), so this is our only critical point, where
f(0, 0) = 0.

Next, we find the maximum and minimum along the boundary by reducing f
to a function of one variable and using Calculus 1 techniques. This domain is
the filled-in circle centered at (0, 0) with radius 1, so our boundary is the circle
x2 + y2 = 1, and we can use y2 = 1− x2 to define our function conveniently:

g(x) = f(x, y) = 2x3 + y4 = 2x3 + (1− x2)2 = x4 + 2x3 − 2x2 + 1

g′(x) = 4x3 + 6x2 − 4x = 2x(2x2 + 3x− 2) = 2x(2x− 1)(x + 2)

Setting g′(x) = 0 and solving for x, we find the critical points (in the 2D
sense) along the boundary to occur at x = 0, x = −2, and x = 1

2 . We can
immediately disregard x = −2 because −1 ≤ x ≤ 1 on this circle, then the

points remaining are (0,±1) and
(

1
2 ,±

√
3
2

)
. The value of the function at each

is g(0) = f(0,±1) = 1 and g
(
1
2

)
= f

(
1
2 ,±

√
3
2

)
= 13

16
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We also need to test the points at the endpoints of the boundary, i.e. where
x = −1 and x = 1. g(−1) = f(−1, 0) = −2 and g(1) = f(1, 0) = 2.

Thus, on the domain D, the absolute minimum is f(−1, 0) = −2 and the abslute
maximum is f(1, 0) = 2.

Example 8 (§14.7, #43): Find three positive numbers whose sum is 100 and
whose product is a maximum.

Since x + y + z = 100, and we want to maximize xyz. First, we want to reduce
this to a function of 2 variables by noting z = 100 − x − y, then we seek to
maximize f(x, y) = xy(100− x− y). Next, find the first partial derivatives:

fx(x, y) = y(100− x− y)− xy = 100y − y2 − 2xy

fy(x, y) = 100x− x2 − 2xy

Setting fx(x, y) = 0 implies y(100 − y − 2x) = 0, so y = 0 or y = 100 − 2x,
but y = 0 would not satisfy the condition that y is positive. Then, we plug
in y = 100 − 2x into the y derivative and see what values of x will make
fy(x, 100− 2x) = 0. We have

fy(x, 100− 2x) = 100x− x2 − 2x(100− 2x) = 0

100x− x2 − 200x + 4x2 = 0

3x2 − 100x = 0

3x2 = 100x

3x = 100

x =
100

3

Then y = 100 − 2
(
100
3

)
= 100

3 . We will now use the Second Derivative Test to
see if this point is a local maximum. fxx(x, y) = −2y, fyy(x, y) = −2x, and
fxy(x, y) = 100− 2y − 2x, then

D

(
100

3
,

100

3

)
= fxx

(
100

3
,

100

3

)
fyy

(
100

3
,

100

3

)
− fxy

(
100

3
,

100

3

)2

= −200

3
· −200

3
−
(

100

3

)2

=
40000

9
− 10000

9

=
10000

3
> 0

fxx
(
100
3 , 100

3

)
< 0, then

(
100
3 , 100

3

)
is a local maximum while the boundary points

would have one of the variables equal to zero, which yields a zero product, thus
this point must be the maximum: x = y = z = 100

3 .
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Example 9 (§14.7, #45) Find the maximum volume of a rectangular box
that is inscribed in a sphere of radius r.

For convenience, let’s center the sphere at (0, 0, 0), then we have x2+y2+z2 = r2.
Clearly, the box should touch the sphere on each corner, or else translation or
expansion would make it larger while still inside the sphere, the corners of our
box must satisfy this formula.

Centering the box at (0, 0, 0) and orienting it such that its edges are parallel to
the coordinate axes is simplest (since rotating it cannot add volume, we may do

this), then the dimensions will be L = 2x, W = 2y, D = 2z = 2
√

r2 − x2 − y2,

then the volume can be written V (x, y) = 8xy
√
r2 − x2 − y2, and this is what

we must maximize.

Vx(x, y) = 8y
√
r2 − x2 − y2 +

8xy(−2x)

2
√

r2 − x2 − y2

=
8y(r2 − x2 − y2)− 8x2y√

r2 − x2 − y2

Then, setting it equal to 0,

Vx(x, y) =
8y(r2 − x2 − y2)− 8x2y√

r2 − x2 − y2
= 0

8y(r2 − 2x2 − y2)√
r2 − x2 − y2

= 0

r2 − 2x2 − y2 = 0

r2 = 2x2 + y2 = 0

Similarly, setting Vy(x, y) = 0 yields r2 = x2 + 2y2, then 2x2 + y2 = x2 + 2y2,
which implies x = y, then we find

r2 = x2 + 2x2 = 3x2

r√
3

= x = y

This is the only critical point and there must be a maximum given the geometric

nature of the problem, and so V
(

r√
3
, r√

3

)
= 8 r2

3

√
r2 − r2

3 −
r2

3 = 8r3

3
√
3
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