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Motivation and Models

Random Walks on Random Lattices

(a) Random Walk (b) Random Lattice
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Motivation and Models

Stochastic Cumulative Loss Model

Suppose (nk, wk) are iid random vectors valued in N× R≥0 with mutually dependent components

Consider η, a Poisson random measure of rate λ: i.e. for a Poisson point process 0 < t1 < t2 < ... a.s. and
E ∈ B(R≥0),

η(E) =
∞∑
k=1

(nk, wk)εtk (E)

where εtk is the Dirac (point mass) measure,

εtk (E) =

{
1, if tk ∈ E
0, else
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Motivation and Models

Stochastic Cumulative Loss Process (cont.)

η([0, t]) is a monotone increasing process measuring the cumulative losses up to time t,
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Motivation and Models

Delayed Observation

The process is observed upon a delayed renewal process

T =
∞∑
n=0

ετn

δk = τk − τk−1 are iid with LST l(θ), k ∈ N

τ0 = δ0 is independent of δk, k ≥ 1

The process of interest is the embedded process

Z =
∞∑
n=0

η((τn−1, τn])ετn =
∞∑
n=0

(Xn, Yn)ετn

(Nn,Wn) = Z([0, τn]), the value of the process at τn
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Motivation and Models

Model Summary: 4 Random Parts

1 The arrival process t1 < t2 < ...

2 The nodes lost per attack

3 The weight per node

4 The observation process τ0 < τ1 < τ2 < ...
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Motivation and Models

Delayed Observation as an Embedded Process

We consider the (green) embedded process moving on a random lattice
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Motivation and Models

Observed Threshold Crossings

ρ = min{n : Nn > M or Wn > V }

The first observed passage time (FOPT) is τρ
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Motivation and Models

Simulations of the Observed Process
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Motivation and Models

General Trajectory of the Upcoming Material

1 Analysis of the process upon τρ−1 and τρ (time insensitive analysis)
J. H. Dshalalow and R. White. Neural, Parallel, and Scientific Computations, 21 (2013).

2 Strategy 1 for a refined analysis (auxiliary thresholds)
J. H. Dshalalow and R. White. Stochastic Analysis and Applications, 32:3 (2014).

3 d-dimensional time insensitive analysis (to be written as an additional paper)
4 Strategy 2 for refined analysis (time sensitive analysis)

J.H. Dshalalow and R. White. Time Sensitive Analysis of Independent and Stationary Increment Processes
(2015 submitted paper).
R. White and J. H. Dshalalow. Random Walks on Random Lattices with Applications (2015 submitted paper).
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Time Insensitive Analysis

Functional of Interest

We seek a joint functional of the of the process upon τρ−1 and τρ,

Φ(α0, α, β0, β, h0, h) = E
[
α0

Nρ−1αNρe−β0Wρ−1−βWρe−h0τρ−1−hτρ
]

Φ leads to marginal PGFs/LSTs,

Φ(1, α, 0, 0, 0, 0) = E
[
αNρ

]
Φ(1, 1, β0, 0, 0, 0) = E

[
e−β0Wρ−1

]
Φ(1, 1, 0, 0, 0, h) = E

[
e−hτρ

]
which lead to moments and distributions of components of the process upon τρ−1 and τρ
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Time Insensitive Analysis

Goal and Operational Calculus Strategy

The goal is to derive Φ in an analytically or numerically tractable form

Strategy to derive Φ,

Φ
H−→ Ψ

Assumptions−−−−−−→ Ψ (convenient form)
H−1

−−−→ Φ (tractable)

for an operator H introduced next
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Time Insensitive Analysis

Hpq and H−1
xy Operators

Hpq = LCq ◦Dp

LCq(g(q))(y) = yLq(g(q)) = y

∞∫
q=0

g(q)e−qy dq

Dp{f(p)}(x) = (1− x)

∞∑
p=0

xpf(p), ‖x‖ < 1

Dp’s inverse restores a sequence f ,

Dkx (·) = limx→0
1
k!

∂k

∂xk

(
1

1−x (·)
)
, k ∈ N

Dkx (Dp{f(p)}(x)) = f(k)

H−1
xy (Ψ(x, y)) (p, q) = L−1

y

(
1

y
Dpx (Ψ(x, y))

)
(q)
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Time Insensitive Analysis

Decomposition of Φ

Let µ = inf{n : Nn > M}, ν = inf{n : Wn > V }

Decompose Φ as

Φ = E
[
α0

Nρ−1αNρe−β0Wρ−1−βWρe−h0τρ−1−hτρ
]

= E
[
α
Nµ−1

0 αNµe−β0Wµ−1−βWµ−h0τµ−1−hτµ1{µ<ν}

]
+ E

[
α
Nµ−1

0 αNµe−β0Wµ−1−βWµ−h0τµ−1−hτµ1{µ=ν}

]
+ E

[
α
Nν−1
0 αNν e−β0Wν−1−βWν−h0τν−1−hτν1{µ>ν}

]
= Φµ<ν + Φµ=ν + Φµ>ν

We will derive Φµ<ν of the confined process on the trace σ-algebra F ∩ {µ < ν}
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Time Insensitive Analysis

Decomposing Further, Applying Hpq

Introduce µ(p) = inf{j : Nj > p}, ν(q) = inf{k : Wk > q}

Φµ(p)<ν(q) =
∑
j≥0

∑
k>j

E
[
α
Nj−1

0 αNj e−β0Wj−1−βWj−h0τj−1−hτj1{µ(p)=j, ν(q)=k}

]

By Fubini’s Theorem, Hpq can be interchanged with the two series and expectation

Using the memoryless property of the Poisson process and independent increments,

Hpq
(
Φµ(p)<ν(q)

)
(x, y) =

∑
j≥0

E
[
(α0αx)Nj−1 e−(β0+β+y)Wj−1−(h0+h)τj−1

]
× E

[
αXj

(
1− xXj

)
e−(β+y)Yj−hδj

]
×
∑
k>j

E
[
e−y(Yj+1+...+Yk−1)

]
E
[
1− e−yYk

]
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Time Insensitive Analysis
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Time Insensitive Analysis

Deriving Φµ<ν

Denote the joint transform of each observed increment

γ(z, v, ϑ) = E
[
zX1e−vY1−ϑδ1

]
The j and k series (assuming ‖γ‖ < 1) become

Γ 1
0 − Γ0 + (Γ 1 − Γ )γ0

∑
j≥1

γj−1 = Γ 1
0 − Γ0 + γ0

Γ 1 − Γ
1− γ

(1− γ(1, y, 0))
∑
k>j

γk−1−j(1, y, 0) = 1

Then Φµ<ν = H−1
xy

(
Γ1

0 − Γ0 + γ0
1−γ

(
Γ1 − Γ

))
(M,V ), where

γ = γ (α0αx, β0 + β + y, h0 + h)

Γ = γ (αx, β + y, h)

ζ1 = γ(αx, β, h)

Ryan White Random Walks on Random Lattices 2015 16 / 56



Time Insensitive Analysis

Result for Φ

Solving for Φµ=ν and Φµ>ν analogously and adding to Φµ<ν ,

Φ = H−1
xy

(
ζ1
0 − Γ0 +

γ0

1− γ
(
ζ1 − Γ

))
(M,V )

where

γ = γ (α0αx, β0 + β + y, h0 + h)

Γ = γ (αx, β + y, h)

ζ1 = γ(αx, β, h)
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Time Insensitive Analysis

Results for a Special Case

To demonstrate that tractable results can be derived from this, we will consider a special case where

δk ∈ [Exponential(µ)] =⇒ L(θ) = µ
µ+θ

nk ∈ [Geometric(a)] =⇒ g(z) = az
1−bz , (b = 1− a)

wjk ∈ [Exponential(ξ)] =⇒ l(u) = ξ
ξ+u

(N0,W0) = (0, 0)
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Time Insensitive Analysis

Theorem 1

Φ (1, z, 0, v, 0, θ) = E
[
zNρe−vWρe−θτρ

]
= 1−

(
1− µ

µ+ θ + λ

v + ξ(1− bz)
v + ξ(1− c2z)

)(
1 +

bµ

λ+ bθ
+

aλµ

(λ+ bθ) (λ+ θ)
φ (z, v, θ)

)
,

φ(z, v, θ) =
v + ξ

v + ξ(1− c1z)
−
c1zξ Q(M − 1, c1zξV ) e−(v+ξ(1−c1z))V

v + ξ(1− c1z)
−

(c1zξ)
M P (M − 1, (ξ + v)V )

(v + ξ(1− c1z))(ξ + v)M−1
,

c1 =
λ+ bθ

λ+ θ
, c2 =

λ+ b(µ+ θ)

λ+ µ+ θ
,

and Q(x, y) = Γ(x,y)
Γ(x)

is the lower regularized gamma function.

Ryan White Random Walks on Random Lattices 2015 19 / 56



Time Insensitive Analysis

Corollaries: Marginal Transforms

Φ(1, z, 0, 0, 0, 0) = E
[
zNρ

]
=
zQ(M − 1, zξV )e−ξ(1−z)V + zMP (M − 1, ξV )

µ+ λ− (λ+ bµ)z

Φ(1, 1, 0, v, 0, 0) = E
[
e−vWρ

]
=
λv + bµv + aξµφ(1, v, 0)

aξµ+ (λ+ µ)v

Φ(1, 1, 0, 0, 0, θ) = E
[
e−θτρ

]
= 1− θ

µ+ θ

[
1 +

bµ

λ+ bθ
+

aλµφ(1, 0, θ)

(λ+ bθ)(λ+ θ)

]
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Time Insensitive Analysis

Useful Results: CDF of First Observed Passage Time, τρ

Fτρ(ϑ) = P (τρ < ϑ)

= λP (M − 1, ξV )

M−1∑
j=0

cjφj(ϑ) + λe−ξλ
M−2∑
k=0

(ξV )k

k!

k∑
j=0

djφj(ϑ)

where

cj =

(
M − 1

j

)
(aλ)jbM−1−j

dj =

(
k

j

)
(aλ)jbk−j

φj(ϑ) =
1

λj+1
P (j + 1, λϑ)− e−µϑ

(λ− µ)j+1
P (j + 1, (λ− µ)ϑ)
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Time Insensitive Analysis

Useful Results: Means at τρ

E [Nρ] =
λ+ bµ

aµ
+M − (M − 1)Q(M − 1, ξV ) + ξV Q(M − 2, ξV )

E [Wρ] =
E [Nρ]

ξ
= E [Nρ]E[w11]

1,000 realizations of the process under each of the some sets of parameters (λ, µ, a, ξ,M, V ) were simulated and
sample means recorded:

Parameters E [Nρ] S. Mean A. Error E [Wρ] S. Mean A. Error
(1) 989.08 988.82 0.26 989.08 990.06 0.98
(2) 990.63 990.39 0.24 990.63 990.27 0.36
(3) 989.28 989.92 0.64 989.28 988.97 0.31
(4) 989.08 989.08 0.00 989.08 989.68 0.31
(5) 503.00 502.73 0.27 1006.00 1005.04 0.96
(6) 1002.00 1001.57 0.43 501.00 500.91 0.09
(7) 803.00 802.68 0.32 803.00 802.67 0.33
(8) 752.00 752.10 0.10 752.00 751.68 0.32
(9) 493.57 493.46 0.11 987.14 986.59 0.55

J. H. Dshalalow and R. White. Neural, Parallel, and Scientific Computations, 21 (2013).
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Auxiliary Threshold Models

Auxiliary Threshold Model

We introduce another threshold M1 < M with µ1 = min{n : Nn > M1}.
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Auxiliary Threshold Models

Functional of Interest

Our functional of interest will be similar to before, but containing terms associated with the auxiliary crossing at
µ1

Φµ1<ρ = Φµ1<ρ (z0, z, α0, α, v0, v, β0, β, θ0, θ, h0, h)

= E

[
z
Nµ1−1

0 zNµ1 α
Nρ−1

0 αNρ e−v0Wµ1−1−vWµ1 e−β0Wρ−1−βWρ e−θ0τµ1−1−θτµ1 e−h0τρ−1−hτρ 1{µ1<ρ}

]
= Φµ1<µ<ν + Φµ1<µ=ν + Φµ1<ν<µ

=

∑
j≥0

∑
k>j

∑
n>k

+

∑
j≥0

∑
n=k>j

+

∑
j≥0

∑
n>j

∑
k>n

 (µ1 = j, µ = k, ν = n)

We use an operator Hpqs = LCs ◦Dq ◦Dp adaped to work with the additional discrete threshold, but the path
to results remains the same

Φµ1<ρ
Hpqs−−−→ Ψµ1<ρ

Assumptions−−−−−−→ Ψµ1<ρ (convenient)
H−1
xyw−−−−→ Φµ1<ρ (tractable)
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Auxiliary Threshold Models

Results for Φµ1<ρ

Φµ1<ρ = H−1
xyw

([
φ1

0 − φ0 +
ϕ0

1− ϕ (φ1 − φ)

]
ξ1 − χ
1− ψ

)
(M1,M, V )

where

ϕ = γ (u0uα0αxy, v0 + v + β0 + β + w, θ0 + θ + h0 + h)

φ = γ (uα0αxy, v + β0 + β + w, θ + h0 + h)

φ1 = γ (uα0αy, v + β0 + β + w, θ + h0 + h)

ψ = γ (α0αy, β0 + β + w, h0 + h)

χ = γ (αy, β + w, h)

ξ1 = γ (α, β, h)
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Auxiliary Threshold Models

Results for a Special Case

Suppose

δk = c a.s.

nk with arbitrary finite distribution (p1, p2, ..., pm)

wjk ∈ [Gamma(α, ξ)]

Ryan White Random Walks on Random Lattices 2015 26 / 56



Auxiliary Threshold Models

Theorem

Φµ1<ρ(1, z, 1, 1, 0, v, 0, 0, 0, θ, 0, 0) = E
[
zNµ1 e−vWµ1 e−θτµ1 1{µ1<ρ}

]
=

{
M1−1∑
k=0

zkFk

M−1−k∑
m=0

zmEm

(
ξ

v + ξ

)α(k+m)

P (α(k +m), (v + ξ)V )

−
M1−1∑
k=0

zk
(

ξ

v + ξ

)αk
P (αk, (v + ξ)V )

k∑
n=0

EnFk−n

}
e−c(θ+λ)

Fj =

bR−1
R

jc∑
r=0

(cλ)j−r Li−(j−r)

(
e−c(θ+λ)

) ∑
‖β‖1=j

[R]·β=r+j

pβ11 · · · p
βR
R

β1! · · · βR!
,

Ej =

bR−1
R

jc∑
r=0

(cλ)j−r
∑
‖β‖1=j

[R]·β=r+j

pβ11 · · · p
βR
R

β1! · · · βR!
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Auxiliary Threshold Models

A Computational Difficulty

∑
‖β‖1=j

[R]·β=r+j

pβ11 · · · p
βR
R

β1! · · · βR!
,

Model 1 is general and useful, but it requires calculation of all integer solutions in {0, 1, ..., R}R of the linear
system

β1 + β2 + ...+ βR = j

β1 + 2β2 + ...+RβR = r + j

for each j = 0, 1, ...,M − 1 and r = 0, 1, ...,
⌊
R−1
R
j
⌋
.

Other special cases: nk geometric, nk = n a.s.,
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Auxiliary Threshold Models

Results and Simulation

We find Φµ1<ρ(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) = E
[
1{µ1<ρ}

]
= P{µ1 < ρ} and compare to simulated results for a

range of M1 values

J. H. Dshalalow and R. White. Stochastic Analysis and Applications, 32:3 (2014).
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Auxiliary Threshold Models

Simulation for an Alternate Model

We did the same under the assumptions δ1 ∈ [Exponential(µ)], n1 ∈ [Geometric(a)], w11 ∈ [Exponential(ξ)].

J. H. Dshalalow and R. White. Stochastic Analysis and Applications, 32:3 (2014).
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Auxiliary Threshold Models

Continuous and Dual Auxiliary Threshold Models

Figure: Continuous Auxiliary Model, ν1 = min{n : Wn > V1} Figure: Dual Auxiliary Model, ρ1 = max{µ1, ν1}
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d-Dimensional Insensitive Model

d-dimensional Model

Suppose A(t) is a d-dimensional process similar to the models above, with observed crossing indices
{ν1, ..., νd} and ρ = min{ν1, ..., νd}. We investigate

Φ(u) = E
[
u

A1ρ

1 · · ·uAdρ
d

]
If a dimension of the mark is continuous-valued, the operator Dp may be replaced with LCp

In addition, terms of the form u
Ajρ
j in the functionals should be replaced with terms of the form e−ujAjρ

i.e. take uj 7→ e−uj

Thus, we lose no generality by assuming the process is discrete-valued
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d-Dimensional Insensitive Model

Confined Functionals

Let Q be a sub-partial ordering of threshold crossings, then we seek

ΦQ(u) = E
[
u

A1ρ

1 · · ·uAdρ
d 1Q

]
For example, let Q = {ν1 = ν2 < ν3} ∩ {ν4 < ν3} in 4D, then we may find

ΦQ(0) = E [1Q] = P (ν1 = ν2 < ν3, ν4 < ν3)
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d-Dimensional Insensitive Model

Confined Functionals

For the set P partial orderings satisfying sub-partial ordering Q,

ΦQ(u) = E
[
uAρ1Q

]
=

∑
{P∈P}

E
[
uAρ1P

]
=

∑
{P∈P}

ΦP (u)

For example, let Q = {ν1 = ν2 < ν3} ∩ {ν4 < ν3} in 4D, then

P = {{ν1 = ν2 < ν4 < ν3}, {ν1 = ν2 = ν4 < ν3}, {ν4 < ν1 = ν2 < ν3}}

ΦP =
∑
{P∈P}

ΦP = Φν1=ν2<ν4<ν3 + Φν1=ν2=ν4<ν3 + Φν4<ν1=ν2<ν3
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d-Dimensional Insensitive Model

Arbitrary Confined Functional

Suppose P is an arbitrary partial ordering of d crossings observed upon k times

Fixing jn’s, we derive

where R’s simply depend on u, v, y, and the increment’s joint functional γ
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d-Dimensional Insensitive Model

Rj2sj

Rk2sk = E

[(
1− yA

p(sk−1+1)
sk

p(sk−1+1)

)
· · ·
(

1− yA
p(d)
sk

p(d)

)]

=

{
1−

[
γp
(
1; yp(sk−1+1),1

)
+ γp

(
1; 1, yp(sk−1+2),1

)
+ ...+ γp

(
1; 1, yp(n)

)]
+

[
γp
(
1; yp(sk−1+1), yp(sk−1+2),1

)
+ ...+ γp

(
1; yp(sk−1+1),1, yp(d)

)
+ ...+ γp

(
1; 1, yp(d−1), yp(d)

)]
+ ...+ (−1)rk−rk−1 γp

(
1; yp(sk−1+1), ..., yp(d)

)}
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d-Dimensional Insensitive Model

Code (in Python) is developed that

1 Generates all partial orderings of d indices (d ≤ 10 feasible)

2 Queries the list to prune it to P for any specified Q

The is computationally intense for large d, because we no only have d! partial orderings with all < signs, but
also all partial orderings with =’s

Special case results rely on d transform inversions, so this is sufficient for most purposes
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Time Sensitive Analysis

Time Sensitive Analysis: Motivation
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Time Sensitive Analysis

New capabilities:

Joint results: E
[
e−uWρ1{t<τρ}

]
, P (Wρ < s, τρ < t), P (Nρ = n, τρ < t)

Conditional probabilities: P (Nρ = n|τρ > t) =
P(Nρ=n,τρ>t)

P(τρ>t)
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Time Sensitive Analysis

The Previous Method Fails!

We would like to expand each functional in stochastic series as before

Hpq
(∫

t≥0

e−θtE
[
e−v1·Aρ−1−v2·Aρ−w·A(t)−h0τρ−1−hδρ1{t<τρ−1}

]
dt

)
= Hpq

(∑
j>0

∑
k>j

∫
t≥0

e−θtE

[
e−v1·Aj−1−v2·Aj−(...)1{t<τj−1}1{µ(p)=j,ν(q)=k}

]
dt

)

However, we cannot simply find the terms to sum since A(t) is involved

Next, we prove a very general result leading to a way to represent these terms
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Time Sensitive Analysis

ISI Processes

Consider a Rd-valued stochastic process A(t) on a filtered probability space (Ω,F , (Ft)t≥0, P ) such that

A(t) has independent increments:

For 0 < t1 < ... < tk, the increments A(t1)−A(0),A(t2)−A(t1), ...,A(tk)−A(tk−1) are independent.

i.e., increments on non-overlapping time intervals are independent

A(t) has stationary increments:

For 0 ≤ s < t, the distribution of A(t)−A(s) depends only on t− s

Lévy processes are ISI (e.g. Poisson processes, Wiener processes)
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Time Sensitive Analysis

Discrete-valued Dimensions

If a dimension of the mark is discrete-valued, the operator LCp may be replaced with the Dp operator

In addition, terms of the form e−v·An in the functionals should be replaced with terms of the form∏d
j=0 v

Ajn
j (i.e. take vj 7→ −ln vj).

Thus, we lose no generality by assuming the process is continuous-valued in each dimension.
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Time Sensitive Analysis

ISI Functionals

Suppose T = {T0, T1, ..., Tm} are random variables with Tn = Tn−1 + ∆n where each ∆n is independent
of ∆0,∆1, ...,∆n−1

We do not assume they are identically distributed

For 1 ≤ n ≤ m, we will seek functionals of the form

Fn (t,v0, ...,vm,w,x) = E
[
e−

∑m
j=0 vj ·A(Tj)−w·A(t)−x·∆1{Tn−1

≤t<Tn}
]
,

where ∆ = (∆0, ...,∆m)
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Time Sensitive Analysis

Theorem 1

The functional Fn (t,v0, ...,vm,w,x) of the d-dimensional ISI process A(t) on the trace σ-algebra
F ∩ {Tn−1 ≤ t < Tn} where Tn−1 and ∆n are independent of Ft satisfies

F ∗n (θ,v0, ...,vm,w,x)

=

n−1∏
j=0

γj (bj + w, xj + θ)E
[
e−xn∆nψ (bn,bn + w,∆n)

] m∏
j=n+1

γj (bj , xj)

where

bj =

m∑
i=j

vi

ϕ (b, s) = E
[
e−b·A(s)

]
ψ (b,x, α) =

(
e−θ(·)ϕ (b, ·)

)
∗ ϕ (x, ·) (α) =

∫ α

0

e−θtϕ (b, t)ϕ (x, α− t) dt

γj (a, ϑ) = E
[
e−ϑ∆j e−a·[A(Tj)−A(Tj−1)]

]
= E

[
e−a·A(∆j)−ϑ∆j

]
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Time Sensitive Analysis

Theorem 1 Proof

A (Tk) =

k∑
j=0

(A (Tj)−A (Tj−1)) , k = 0, ..., n− 1

A(t) = A(t)−A (Tn−1) +

n−1∑
j=0

(A (Tj)−A (Tj−1))

A (Tk) =

k∑
j=0

(A (Tj)−A (Tj−1)) + A(t)−A(t), k = n, ...,m

Let α = (α0, ..., αm) and sn =
∑n
j=0 αj . Writing the expectation F ∗n explicitly,

F ∗n (θ,v0, ...,vm,w,x)

=

∫
t≥0

e−θt
∫
α∈Rm+1

≥0

e−x·αE

[
e−

∑n−1
j=0 (bj+w)·[A(sj)−A(sj−1)]−(bn+w)·[A(t)−A(sn−1)]

× e−bn·[A(sn)−A(t)]−
∑m
j=n+1 bj ·[A(sj)−A(sj−1)]

× 1{sn−1
≤t<sn−1+αn}

]
dP m
⊗
j=0

∆j
(α0, ..., αm) dt
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Time Sensitive Analysis

Theorem 1 Proof (cont.)

By the independent and stationary increment properties,

F ∗n (θ,v0, ...,vm,w,x)

=

∫
t≥0

e−θt
∫

α∈Rm+1
≥0

e−x·α
n−1∏
j=0

ϕ (bj + w, αj)ϕ (bn + w, t− sn−1)ϕ (bn, sn−1 + αn − t)

×
m∏

j=n+1

ϕ (bj , αj) 1{sn−1
≤t<sn−1+αn} dP m

⊗
j=0

∆j
(α0, ..., αm) dt

By Fubini’s Theorem and the independence of ∆0, ...,∆m,

=

n−1∏
j=0

∫
αj≥0

e−(xj+θ)αjϕ (bj + w, αj) dP∆j (αj)

m∏
j=n+1

∫
αj≥0

e−xjαjϕ (bj , αj) dP∆j (αj)

×
∫
αn≥0

e−xnαn
∫ sn−1+αn

t=sn−1

e−θ(t−sn−1)ϕ (bn + w, t− sn−1)ϕ (bn, sn−1 + αn − t) dt dP∆n (αn)
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Time Sensitive Analysis

Theorem 1 Proof (cont.)

By the translation invariance of the Lebesgue measure, taking u = t− sn−1,

F ∗n (θ,v0, ...,vm,w,x)

=

n−1∏
j=0

γj (bj + w, xj + θ)
m∏

j=n+1

γj (bj , xj)

×
∫
αn≥0

e−xnαn
∫ αn

u=0

e−θuϕ (bn + w, u)ϕ (bn, αn − u) du dP∆n (αn) (1)

=

n−1∏
j=0

γj (bj + w, xj + θ)
m∏

j=n+1

γj (bj , xj)

∫
αn≥0

e−xnαnψ (bn + w,bn, αn) dP∆n (αn) (2)

=

n−1∏
j=0

γj (bj + w, xj + θ)E
[
e−xn∆nψ (bn + w,bn,∆n)

] m∏
j=n+1

γj (bj , xj) (3)
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Time Sensitive Analysis

Corollary 2

Let A(t) be a d-dimensional marked Poisson process of rate λ and assume T is independent of Ft, then

F ∗n (θ,v0, ...,vm,w,x) =

n−1∏
j=0

Lj (θ + xj + λ (1− g (bj + w)))

× Ln (xn + λ (1− g (bn)))− Ln (xn + θ + λ (1− g (bn + w)))

θ + λ (g (bn + w)− g (bn))

×
m∏

j=n+1

Lj (xj + λ (1− g (bj)))

where

Lj (z) = E
[
e−z∆j

]
is the LST of ∆j

g(v) = E
[
e−v·a1

]
is a joint LST of the marks

i.e. assume the marks are nonnegative real-valued
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Time Sensitive Analysis

Returning to the Goal

The goal is to find joint functionals of the form

Φ(1) (θ,v1,v2,w, h0, h) =

∫
t≥0

e−θtE
[
e−v1·Aρ−1−v2·Aρ−w·A(t)−h0τρ−1−hδρ1{t<τρ−1}

]
dt

Φ(2) (θ,v1,v2,w, h0, h) =

∫
t≥0

e−θtE
[
e−v1·Aρ−1−v2·Aρ−w·A(t)−h0τρ−1−hδρ1{τρ−1≤t<τρ}

]
dt

τρ−1 and δρ are not independent, so the results are not immediately applicable. Let T0 = 0 and

T1 = τj−1 = δ0 + δ1 + ...+ δj−1 T2 = τj = T1 + δj

T3 = τk−1 = T2 + δj+1 + ...+ δk−1 T4 = τk = T3 + δk

for fixed j and k so that each ∆n is independent of the prior ∆r’s
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Time Sensitive Analysis

Corollary 3

Let A(t) be a 2-dimensional marked Poisson process of rate λ. For the process with m = 4 on the trace
σ-algebra F (Ω) ∩ {t < τj−1}, respectively,

F ∗1jk (θ,v1,v2,v3,v4,w, h0, h0, h)

= Lt
{
E
[
e−v1·Aj−1−v2·Aj−v3·Ak−1−v4·Ak−w·A(t)−h0τj−1−hδj1{t<τj−1}1{µ=j,ν=k}

]}
=
γ0 (b1, h0) γj−1 (b1, h0)− γ0 (b1 + w, θ + h0) γj−1 (b1 + w, θ + h0)

θ + λ (g (b1 + w)− g (b1))
γ (b2, h) γ (v4, 0) γk−1−j (b3, 0)

where

An = A(τn)

Xn = An −An−1

γ(v, θ) = E
[
e−v·X1−θδ1

]
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Time Sensitive Analysis

Theorem 4

The joint functional Φ
(1)
µ<ν of the process A(t) on the interval [0, τρ−1) satisfies

Φ
(1)
µ<ν (θ,v1,v2,w, h0, h)

=

∫
t≥0

e−θtE
[
e−v1·Aµ−1−v2·Aµ−w·A(t)−h0τµ−1−hδµ1{t<τµ−1}1{µ<ν}

]
dt

= H−1
y1y2

(
γ ((v21, v22 + y2) , h)− γ (v2 + y, h)

θ + λ (g (v1 + v2 + y + w)− g (v1 + v2 + y))

×
[

γ0 (v1 + v2 + y, h0)

1− γ (v1 + v2 + y, h0)
− γ0 (v1 + v2 + y + w, θ + h0)

1− γ (v1 + v2 + y + w, θ + h0)

])
(M,V )

where

Hpq = LCp ◦ LCq
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Time Sensitive Analysis

Theorem 4 Proof

Hpq
(

Φ
(1)

µ(p)<ν(q) (θ,v1,v2,w, h0, h)
)

= Hpq
(∑
j>0

∑
k>j

∫
t≥0

e−θtE

[
e−v1·Aj−1−v2·Aj−(...)1{t<τj−1}1{µ(p)=j,ν(q)=k}

]
dt

)

Then, by Fubini’s Theorem and since 1{t<τj−1} = 0 if j = 0,

=
∑
j>0

∑
k>j

F ∗1jk (θ,v1 + (y1, 0) ,v2, (0, y2) ,0,w, h0, h0, h)

−
∑
j>0

∑
k>j

F ∗1jk (θ,v1,v2 + (y1, 0) , (0, y2) ,0,w, h0, h0, h)

−
∑
j>0

∑
k>j

F ∗1jk (θ,v1 + (y1, 0) ,v2,0, (0, y2) ,w, h0, h0, h)

+
∑
j>0

∑
k>j

F ∗1jk (θ,v1,v2 + (y1, 0) ,0, (0, y2) ,w, h0, h0, h)

which by Corollary 3 converge to the proper terms assuming ‖γ‖ < 1
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Time Sensitive Analysis

5 Similar Functionals

Analogous proofs yield results leading to

Φ(1) = Φ
(1)
µ<ν + Φ(1)

µ=ν + Φ
(1)
µ>ν

After deriving another corollary to Theorem 2 analogous to Corollary 3 on {τρ−1 ≤ t < τρ}, we also find
similar expressions for

Φ(2) = Φ
(2)
µ<ν + Φ(2)

µ=ν + Φ
(2)
µ>ν
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Time Sensitive Analysis

Deriving a Joint Probability Distribution (1-d Model)

1 Derive a corollary to Theorem 1 with d = 1, m = 2 (as in Corollary 3)

2 Expand in series under Hp (as in Theorem 4)

3 Specify g and l and take the inverse DM−1
y to get

Φ(1)∗(θ, 1, u, 1, 0, 0) = Lt
{
E
[
uAρ1{t<τρ−1}

]}
(θ)

4 Find the inverse Laplace transform to find

Φ(1)(θ, 1, u, 1, 0, 0) = E
[
uAρ1{t<τρ−1}

]
5 This a restricted PGF, so apply 1

r!
lim
u→0

∂r

∂ur
(·) to find

P{Nρ = r, τρ−1 > t}
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Time Sensitive Analysis

Joint Distribution of τρ−1 and Aρ (1-d Model)

P {Aρ = r, τρ−1 > t}

=
µ

λ

aµ

µ+ λ

µ+ λ

aµ
R0r +

M−1∑
j=1

Rjr

− µ

µ+ λ

G0R0r +

M−1∑
j=1

(Gj −Hj−1)Rjr


−
µ

λ

[
M−1∑
j=0

M−1−j∑
i=0

ci1{r=i+j} − (b+ c)

M−2∑
j=0

M−2−j∑
i=0

ci1{r=i+j+1} + bc

M−3∑
j=0

M−3−j∑
i=0

ci1{r=i+j+2}

]

+
µ

µ+ λ

[
M−1∑
j=0

Gj

M−1−j∑
i=0

ci1{r=i+j} −
M−2∑
j=0

(bGj +Hj)

M−2−j∑
i=0

ci1{r=i+j+1} + b

M−3∑
j=0

Hj

M−3−j∑
i=0

ci1{r=i+j+2}

]
where

c = F (µ, 1) =
bµ+ λ

µ+ λ
Rjr =


0, if r < j

1, if r = j

(c− b) cr−j−1, if r > j
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Time Sensitive Analysis

An Interesting Generalization

Suppose during the the random time interval Ij = (Tj−1, Tj), then

gj(v) = E
[
e−v·aj1

]
lj(ϑ) = E

[
e−ϑδj1

]
γj(v, ϑ) = E

[
e−v·Xj1−ϑδj1

]

Then it is simple to rework results 2-4 above

This allows the position independence of the marks to be relaxed
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